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ABSTRACT

COLLECTIVITY OF EXOTIC SILICON ISOTOPES

By

Andrew Ratkiewicz

The determination of the strength of the electric quadrupole transition between the ground

state and first excited state with spin-party Jπ = 2+ (the B
(
E2; 0+ → 2+

)
value) in an even-

even nucleus provides a measurement of the low-lying quadrupole collectivity. The B(E2)

values for the Z=14 nuclei 34,36,38,40,42Si were measured via intermediate-energy Coulomb

excitation at the National Superconducting Cyclotron Laboratory in East Lansing, Michigan.

The secondary beams were produced by the fragmentation of a 48Ca primary beam guided

onto a high-Z secondary target. De-excitation γ-rays, indicative of the inelastic process, were

detected with the high-efficiency scintillator array CAESAR, located around the secondary

target position of the S800 Spectrograph, in coincidence with scattered particles tracked on

an event-by-event basis in the Spectrograph. The results comprise the first measurements

of the quadrupole collectivity of 40,42Si.

The measured B(E2) values are compared to large-scale shell model calculations and

provide insight into the evolution of shell structure and deformation in this region.
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Chapter 1

Introduction

An atomic nucleus is a many-body Fermionic quantum system made of neutrons and protons

(called nucleons). Nuclear systems are extremely small, with typical radii on the order of

10−14 meters. Protons have a positive electric charge and interact with one another through

the Coulomb force, which repels protons from one another and decreases in strength with

1/r2, where r is the radial coordinate. Neutrons have no electric charge, and since nuclear

systems exist, there must be attractive forces stronger than the Coulomb force at play on the

length scale of nuclear existence. The interaction between the protons and neutrons in the

nucleus is called the strong nuclear force: it is about 100 times stronger than the Coulomb

force on the length scale of a nucleus but is negligible for longer distances.

Around 3000 nuclei have been observed, either in nature or in a laboratory. All but

about 250 of these nuclei are unstable and will eventually decay into stable nuclei. The

consequences of the interplay between the strong nuclear force and the Coulomb force are

clear from Fig. 1.1: there are more neutron-rich nuclei than there are proton-rich nuclei, and

the boundary on the neutron-rich side of the nuclear chart is much less well determined than

it is on the proton-rich side, as it is more difficult to reach experimentally.
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Figure 1.1: Plot showing the nuclear landscape. The number of neutrons (N) is plotted
versus the number of protons (Z). Stable nuclei are shown as black boxes, observed unstable
nuclei as blue boxes, and unstable nuclei predicted to exist, but not yet observed in red.
Magic numbers (discussed in the text) are shown as dashed lines. For interpretation of the
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There is a wealth of experimental evidence suggesting that nuclei have internal structure.

Two such observables are the one- and two-neutron separation energies, given here in terms

of the binding energy of the nucleus (BE(N,Z)), which describes the amount of energy

required to dissociate a nucleus into the nucleons of which it is composed [2]:

BE(N,Z) =
(
ZMp +NMn −M(N,Z)

)
c2 (1.1)

here,M(N,Z) is the mass of an atom with N neutrons and Z protons,Mp(n) is the mass of a

proton (neutron) and c is the speed of light. The one-neutron separation energy (Sn(N,Z))

is the energy required to remove a single neutron from the nucleus, and is the difference

between the binding energy of the nucleus and that of the nucleus with one fewer neutron:

Sn(N,Z) = BE(N,Z)−BE(N − 1, Z) (1.2)

The difference between separation energies for neighboring nuclei (∆Sn) can illustrate inter-

esting changes in structure:

∆Sn = BE(N,Z)−BE(N − 1, Z)− (BE(N + 1, Z)−BE(N,Z)) . (1.3)

These values are plotted in Fig. 1.2 for even-even isotopic chains. The two-neutron separation

energies are enhanced relative to their neighbors at neutron numbers 8, 20, 28, 50, 82, and

126. These numbers of neutrons or protons are called “magic numbers” and nuclei with a

magic number of nucleons are called “magic” nuclei. This enhancement in the amount of

energy required to removed nucleons from a magic nucleus suggests that magic nuclei are

more tightly bound than their neighbors, and that the internal structure of a nucleus has
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observable effects on its properties.

1.1 Nuclear Shell Model - Near Stability

In common with other quantum systems, the energy levels available to a nucleus are quan-

tized. These energy levels are referred to by their radial quantum number, n = 0, 1, 2...,

which counts the number of times the wave function of the particle changes sign, the orbital

angular momentum of the state, ℓ = 0, 1, 2...n (it is common to refer to the ℓ = 0, 1, 2, 3...

states by the letters s, d, p, f...) and the total angular momentum, j⃗ = ℓ⃗ + s⃗, where s⃗ is the

spin of a nucleon. Nucleons are Fermions and must obey the Pauli exclusion principle, so no

two like nucleons can have the same three quantum numbers (nℓj). Thus, each orbital (j)

has 2j + 1 magnetic sub-states (m) and can contain 2j + 1 nucleons, one in each sub-state.

In order to understand the mechanisms that create nuclear structure it is necessary to

have nuclear models which predict observable features. One such picture is the Single Particle

Nuclear Shell Model, which describes the interaction between nucleons in a nucleus in terms

of a mean field potential, and treats the motion of a single nucleon in a potential created

by all of the other nucleons in the nucleus. In such a framework the energy of the orbital

occupied by a nucleon is referred to as the single-particle energy.

In the framework of the shell model, the magic numbers are explained as arising from

the clustering of the energy levels available to the nucleons in the nucleus — some energy

levels are close together, with large gaps between the cluster of levels (or single level) and

the next higher energy level. If all the available levels in a cluster (or shell) have been filled,

the shell is said to be closed.

A nucleus can be described as a system of A nucleons, whose Hamiltonian can be written
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in terms of the interaction between individual nucleons (see [3]):

H =
A∑
i=1

p2i
2mi

+
A∑

i>k=1

Vik (ri − rk) (1.4)

here, the Vik potential describes the two-body interaction between two nucleons and neglects

the Coulomb interaction as being negligible on the length scale in question. The momentum

and mass of each nucleon is described by pi and mi. The problem can be simplified by

framing it in terms of the Hamiltonian of A particles which do not interact with one another

very strongly, but move in a common mean field. The Hamiltonian can then be written

as the unperturbed Hamiltonian (equation 1.4) plus a term due to the residual interaction

between the particles and the mean field. In the simplest models using residual interactions,

a nucleus is treated as a few-body system: a tightly bound core, in which no excitations are

allowed, and one or more less tightly bound valence nucleons. The Hamiltonian of such a

system is:

H =
A∑
i=1

[
p2i
2mi

+ Ui (r)

]
+

A∑
i>k=1

Vik (ri − rk)−
A∑
i=1

Ui (r) (1.5)

the first term in this expression describes the motion in an independent mean field, and

the second two terms are referred to as the residual interaction. This interaction can be

modeled as the unperturbed Hamiltonian (H0, Eq. 1.4) and a slightly perturbative potential

describing the residual interactions (Vres):

H = H0 + Vres. (1.6)
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One choice of the mean field potential is that of a harmonic oscillator:

U(r) =
1

2
µω2r2 , (1.7)

where the reduced mass of the system is µ and the level spacing depends on the oscillator

frequency ω. The energy spectrum of such a system depends on the radial and orbital angular

momentum quantum numbers and is given by:

Enℓ =

(
2n+ ℓ− 1

2

)
ℏω (1.8)

This three-dimensional harmonic oscillator potential predicts shell closures for N or Z = 2,

8, 20, 40, and 70. The lowest three numbers agree with the experimentally observed magic

numbers of N or Z = 2, 8, 20, 28, 50, 82, and 126 — the others clearly do not. It is also

possible to use a Woods-Saxon potential:

U(r) =
V0

1 + e(r−R)/a
(1.9)

which, like the harmonic oscillator potential, successfully predicts magic numbers up to 20

and fails afterwards. For medium mass nuclei, the depth of the potential well is usually

taken to be V0 = −50 MeV, the nuclear radius is given by R = r0A
1/3, with r0 = 1.2 fm.

The diffusivity is usually fixed at a = 0.6 fm (c.f. [2]).

In 1949 Maria Goeppert-Mayer [4] and Otto Haxel, Hans Jensen, and Hans Suess [5]

showed that adding a spin-orbit coupling term:

Vs.o.(r, ℓ⃗, s⃗) = Vs.o.(r)ℓ⃗ · s⃗ (1.10)
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to the central potential reproduces the experimentally observed magic numbers. The shell

closures predicted by the harmonic oscillator potential, the Woods-Saxon potential, and the

Woods-Saxon potential plus a spin-orbit term are shown in Fig.1.3 for neutron single-particle

states in 208Pb [2].

The wave function of each single-particle energy level can be expressed as a having radial

and spherical components:

ψnlm(r) = Rnℓ(r)Yℓm (θ, ϕ) (1.11)

the radial wave function (Rnℓ(r)) does not depend on the sign of r, but if the spherical

harmonic is reflected, the sign of the reflected spherical harmonic depends on ℓ: Y ℓ
m (θ, ϕ) →

Y ℓ
m (π − θ, π + ϕ) = (−)ℓ Y ℓ

m (θ, ϕ), so each single-particle level will have parity (πnℓm =

(−)ℓ). The total parity is then the product of all parities of the occupied single-particle

levels:

π = ΠA
i (−)ℓi = (−)

∑A
i ℓi . (1.12)

Although the extreme single-particle model of a nucleon moving in a mean field potential

successfully reproduces the experimentally observed magic numbers, it does not accurately

describe more detailed nuclear structure. In order to accomplish this, more complicated

models which include two-body matrix elements deduced from fits to data are necessary. A

discussion of such effective interactions can be found in [6].
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1.1.1 Nuclear Shell Model - Away from Stability

Away from stability the arrangement of the single-particle energy levels in a nucleus has

been shown to change for large isospin projection (Tz):

Tz =
N − Z

2
(1.13)

This dependance of the ordering of the single-particle energy levels on the neutron to proton

ratio of a nucleus causes some of the shell closures present at stability to disappear and new

ones to develop in exotic nuclei with large Tz. An example of this behavior can be found in

the appearance of a shell gap at N = 32 for 54Ti, with Z = 22 [7]. These exotic nuclei thus

provide the most stringent tests available for our models of nuclear structure.

One mechanism shown to drive this change in structure is the spin-isospin dependent

part of the nucleon-nucleon interaction [8]. This monopole component of the tensor force

affects the effective single particle energy (ESPE) of an orbital j, which describes the mean

effect from all of the other nucleons on a nucleon in the particular single-particle orbital.

The single-particle energy of the orbital j is determined by its kinetic energy and the

effects of the closed shell on this orbital [9]. The addition of nucleons to a different orbital,

j′, will affect the energy of the orbital j. The monopole component of this interaction is

given by [9]:

V T
j,j′ =

∑
J (2J + 1) ⟨jj′|V |jj′⟩JT∑

J (2J + 1)
(1.14)

here, ⟨jj′|V |jj′⟩JT is the diagonal matrix element related for the state with two nucleons

which are coupled to an isospin (T ) and angular momentum (J). The result (V T
j,j′) is the

monopole component of the nucleon-nucleon residual interaction between nucleons in the

10



orbital j′ in the orbital j.

As nucleons fill the j′ orbital, the single-particle energy of the j orbital is changed. If

neutrons are in the j′ orbital, protons are in the j orbital, and j ̸= j′, then the single-particle

energy of the proton orbital, j, is changed due to the monopole effect of Eq. 1.14 [9]:

∆ϵπ(j) =
1

2

{
V T=0
j,j′ + V T=1

j,j′

}
nν
(
j′
)
. (1.15)

Here, nν
(
j′
)
is the number of neutrons in the orbit j′ and ∆ϵπ(j) gives effective single

particle energy of the orbital j. The expression for the shift in single-particle energy for

neutrons instead of protons can be obtained by swapping π for ν.

The potential V T
j,j′ is attractive between nucleons with opposite isospin and anti-aligned

spins (j>, j
′
<) and repulsive between nucleons with aligned spins (j>, j

′
>). The proton in the

j orbital will also influence the energies of neutrons in the j′ orbital, but the T = 0 term is

more attractive than is the T = 1 term [10].

This effect has been used to explain the modification of nuclear structure found in exotic

nuclei across the nuclear landscape, for instance in the “Island of Inversion” [44] nuclei, with

20 ≤ N ≤ 22 and 10 ≤ Z ≤ 12, where the attraction between the π0d5/2 orbital and ν0d3/2

orbital is decreased as the π0d5/2 orbital is depopulated [8]. This reduction in attraction

between these two proton and neutron orbitals causes the ν0d3/2 orbital to become less

bound, narrowing the N = 28 gap between the ν0d3/2 orbital and the neutron pf shell.
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Figure 1.4: Energies of the first excited states with spin-parity Jπ = 2+ for even-even nuclei.
The traditional magic numbers (2, 8, 20, 28, 50, 82, and 126) are noted by dashed lines
- the enhancement of the energy of the first excited states follows the magic numbers and
highlights the effect of shell closures. Data from [15, 16].

1.2 Signatures of Shell Closures

This work will focus on two indicators of shell closure: the energies of excited states in nuclei

and on the probability of a transition between the ground state (the B(E2; 0+g.s. → 2+1 )

value) and the energy of the first excited state with spin-parity 2+ (E
(
2+1
)
).

1.2.1 Excited State Energies

Even-even nuclei (nuclei with even numbers of protons and neutrons) have a ground state

with spin-parity of Jπ = 0+ and typically1 have a first excited state with spin-parity of

1Some exceptions are 14C, with Jπ
1 = 1−, and 4He, 16O, 40Ca, and 72Kr which have Jπ

1 = 0+

12



Jπ1 = 2+. In magic nuclei near stability there tends to be a large energy gap between the

ground state of the nucleus and the first excited state. As Fig. 1.4 shows, this behavior

occurs broadly over the nuclear chart. It is clear that the enhancement in the energy of the

first excited state is greatest near a shell closure, but decreases mid-shell before increasing

again toward the next shell closure.

1.2.2 Quadrupole Collectivity

Geometric collective models of nuclei attribute low-lying excited states to the coherent mo-

tion of valence nucleons. These models describe two main excitation modes, rotational and

vibrational, taking their names from the classical systems which approximate their excitation

pattern.

1.2.2.1 Rotational and Vibrational Nuclei

A vibrational even-even nucleus has evenly-spaced energy levels. The ground state has spin-

parity 0+, the first excited state 2+, then follows an ideally degenerate triplet of states,

4+, 2+, or 0+, and an ideally degenerate quintet of states 6+, 4+, 3+, 2+, or 0+. The energy

of the nth excited state in an even-even vibrational nucleus is given by:

Evib(n) = nE
(
2+1
)
. (1.16)

A rotational nucleus has an energy spectrum like a rigid rotor:

Erotor(J) =
ℏ2

2I
J (J + 1) , (1.17)
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where I is the moment of inertia of the nucleus. One can determine which collective model

most closely describes an even-even nucleus by measuring the energies, spins and parities of

the low-lying excited states.

1.2.2.2 B(E2) Values

The low-lying excited states of an even-even nucleus are indicative of its structure. The

first of these excited states with spin-parity of 2+ can only decay to the ground state (with

spin-parity 0+) by an electric quadrupole transition (which is discussed in Chapter 2). The

strength of such an electric quadrupole (or E2) transition is of interest and can be used to

illuminate properties of nuclear structure. The reduced transition probability between an

initial state ji and a final state jf , the B(E2) value, is given by:

B
(
E2; ji → jf

)
=

1

2ji + 1

∣∣⟨jf | |O(E2)| |ji⟩
∣∣2 . (1.18)

here, O(E2) is the operator mediating the electric quadrupole transition and will be defined

in Chapter 2. Because the strength of this observable depends on how strongly the initial and

final states are connected through O(E2), it is a robust probe for measuring the collectivity

of a nucleus. Nuclei with large B(E2; 0+g.s. → 2+1 ) values are said to be collective — for the

example of the vibrational model, low-lying states are ascribed to the coherent excitation of

nucleons, so a higher transition probability means that the motion of contributing nucleons

is more in phase.
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1.3 Evolution of Quadrupole Collectivity

Two probes for shell closures are the energy of the first excited state and the reduced transi-

tion strength. The first is expected to be enhanced at shell closures relative to mid-shell and

the latter is expected to be reduced at shell closures relative to mid-shell. Both behaviors

can be understood as the result of the separation between available energy levels at the shell

closures.

1.3.1 The Calcium Isotopic Chain

A canonical example of the behavior discussed in Sec. 1.2 can be found in the calcium

isotope chain. With Z = 20 all calcium isotopes are magic nuclei, but 40,48Ca also have

magic numbers of neutrons (N = 20, 28) and are called doubly-magic for this reason. As

shown in Fig. 1.5, the magic nature of 40Ca is driven by the large energy gap between the

filled π, ν0d3/2 orbitals and the unfilled π, ν0f7/2 orbitals. The energy of the first 2+ state

in 40Ca is 3.904 MeV, while that of the first 2+ excited states in its neighbors with two less

neutrons (38Ca) and two more neutrons (42Ca) are 2.213 and 1.524 MeV, respectively. This

behavior continues towards 48Ca; the first 2+ excited state energies are all lower than 1.6

MeV, while the energy of the first 2+ excited state in the N = 28 nucleus 48Ca is, at 3.8

MeV, dramatically enhanced relative to mid-shell. This behavior is illustrated in the lower

panel of Fig. 1.6.

The B(E2) values for the calcium isotopic chain are enhanced at mid-shell relative to

the shell closures at N = 20, 28, as shown in the upper panel of Fig. 1.6. These features

make the even-even 40−48Ca isotopic chain an excellent reference for the persistence of shell

closures in the neighboring sd− pf shell nuclei, such as for the silicon (with Z = 14), sulfur
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(Z = 16) and argon (Z = 18) isotope chains.

1.3.2 The Neutron SD-PF Shell: The Silicon Isotopic Chain

In order to investigate the persistence of shell closures it is necessary to investigate the

structure of exotic nuclei. The even-even isotopic chain 34−42Si, with Z = 14 are an ideal

site for such a study, as they intersect N = 20, 28 and are experimentally accessible with

the current generation of accelerators. The persistence of the N = 28 shell closure is of

particular interest, as it is the first shell closure attributed to the spin-orbit interaction.

1.3.2.1 A Selected Experimental History of the Silicon Isotopic Chain

In 1998, Ibbotson et al. [17] measured the first excited state energies and B(E2) values for

32−38Si via intermediate-energy Coulomb excitation at NSCL. Ibbotson’s measurements of

the B(E2) values have uncertainties on the order of 30%.

In 2006 Campbell et al. [18, 19, 20] measured the energy of excited states in 40Si via

proton inelastic scattering at NSCL (this measurement and technique will be discussed in

the next chapter). This measurement showed a slightly lower excited state energy (E(2+1 ) =

986(5) keV) than the neighboring N = 26 calcium nucleus 46Ca (E(2+1 ) = 1346.0(3) keV),

suggesting an increase in collectivity. However, matrix elements deduced from proton inelas-

tic scattering cannot be directly compared to the electromagnetic transition strength.

In 2005, Fridmann et al. [22, 23] probed the persistence of the Z = 14 sub-shell gap

for N = 28 via the 2-proton knockout reaction 44S-2p and, from the low-lying levels in 43P,

concluded that the Z = 14 sub-shell gap is still present at 42Si. Subsequently, Bastin et

al [21] measured the energy of the first excited state in 42Si to be E
(
2+1
)
= 770(19) keV,

suggesting that the N = 28 shell closure collapses for Z = 14.
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1.3.2.2 Other Nuclei in the Neutron SD-PF Shell

The N = 28 shell closure persists for the other even-even sd-pf shell nuclei — the sulfur

(S, Z = 16) and argon (Ar, Z = 18) isotopes. As Fig. 1.7 shows, the sulfur isotopes exhibit

characteristics collectivity. The Z = 16 sub-shell gap corresponds to the filling of the π1s1/2

orbital. The argon isotopes, with Z = 18, are produced by half-filling the π0d3/2 orbital, and

are not expected to behave like doubly-magic nuclei. The persistence of the N = 28 shell

closure for Z = 16, 18, although reduced at Z = 16, is seen by the enhancement of E(2+1 )

relative to mid-shell and reduction in B(E2; 0+g.s. → 2+1 ) value relative to mid-shell. The

dramatically different behavior of the silicon isotope chain is highlighted by the reduction of

E(2+1 ) at N = 28 relative to mid-shell, in contrast to all of the other sd−pf nuclei discussed.

Even more striking is that the energy of the first excited state in 42Si is the lowest in the

region.

The collapse of the N = 28 shell closure for Z = 14 needs further investigation so that the

mechanisms driving it can be understood. In particular, the value of electric quadrupole tran-

sition matrix element must be measured in order to constrain the theories predicting structure

in this region. The focus of this work is to measure for the first time the B
(
E2; 0+g.s. → 2+1

)
values for 40,42Si and to reduce the uncertainty in this value for 34−38Si. These measure-

ments will describe the evolution of quadrupole collectivity along Z = 14 in a coherent way

and will shed light on the collapse of the N = 28 shell closure.
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Chapter 2

Measuring Quadrupole Collectivity

Gamma-ray spectroscopy is an experimental technique to probe the structure of low-lying

excited states in nuclei by measuring the γ rays emitted in their decay. This chapter discusses

different spectroscopic techniques, with a focus on those that probe collective behavior by

measuring the strength of an electric quadrupole transition between an excited state and the

ground state of a nucleus.

A magnetic transition of multipolarity λ between an initial state (Jπii ) and a final state

(J
πf
f ) in a nucleus is mediated by an magnetic transition operator, given by [2]:

O(Mλ) =

[
ℓ⃗

2gℓtz
(λ+ 1)

+ s⃗ gstz

]
∇⃗
[
rλY λ

µ (θ, ϕ)
]
µN . (2.1)

Here, Y λ
µ (θ, ϕ) are spherical harmonics, µ is the projection of λ, gℓtz is the orbital g-factor for

a nucleon, gstz is the spin g-factor for a nucleon, and µN is the nuclear magneton. The orbital

g-factor for a free proton is gℓp = 1, the orbital g-factor value for a free neutron is gℓn = 0,

and the spin g-factor values for a free proton or neutron are gsp = 5.586 and gsn = −3.826,

respectively [2].
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The electric transition operator is given by [2]:

O(Eλ) = etzer
λY λ

µ (θ, ϕ) , (2.2)

where etze are the electric charges for the proton or neutron. the proton (eπ) and neutron

(eν) electric charges can either be taken to be the values for free nucleons, in which case

eπ = 1 and eν = 0, or effective charges, which compensate for the truncation of the model

space in shell model calculations. The focus of this work is on electric quadrupole (E2)

transitions. This operator is given by (Eq. 2.2):

O(E2) = etzer
2Y 2

µ (θ, ϕ) . (2.3)

Recall that the reduced electric quadrupole transition probability (as given in Eq. 1.18) is:

B
(
E2; Ji → Jf

)
=

1

2Ji + 1

∣∣⟨jf | |O(E2)| |ji⟩
∣∣2 , (2.4)

where ji is the spin of the initial state and jf is the spin of the final state. The B(E2) value

can also be expressed in terms of effective charges (c.f. [24]):

B(E2) =
1

2Ji + 1
e2 (eπAπ + eνAν)

2 , (2.5)

where Aπ(ν) are the proton (neutron) electric quadrupole transition matrix elements.

22



J
f

π
f

J
i

π
i

E i

E f

E  = E  - E
f iγ ∆E

Figure 2.1: Schematic of the excitation of a nucleus (solid arrow) resulting the emission of a
de-excitation γ ray (squiggly arrow).

2.1 Accessible States

Electromagnetic transitions conserve parity, thus the parities of initial and final states ac-

cessible through electromagnetic transitions are given by:

πiπf =(+1) for M1, E2,M3, E4...

πiπf =(−1) for E1,M2, E3,M4....

(2.6)

Conservation of angular momentum requires that, if a γ ray is emitted, it have λ units of

angular momentum: ∣∣ji − jf
∣∣ ≤ λ ≤ ji + jf . (2.7)

Gamma transitions with λ = 0 are forbidden1. If they were not, the de-excitation photon

would have angular momentum of 0ℏ.

To estimate orders of magnitude and relative strengths of transitions with different mul-

1M0 transitions are forbidden for the obvious reason that magnetic monopoles do not exist; E0
transitions proceed via internal conversion, in which the excited state in the nucleus de-excites by
transferring its energy to an atomic electron [25].
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tipolarity, the transition from the state ji to the state jf can be modeled as resulting from

the excitation of a single proton (this is called a “Weisskopf estimate”). The probability for

such a transition can then be expressed in Weisskopf or single-particle units for magnetic

transitions as [25]:

λ(M1) =5.6× 1013E3

λ(M2) =3.5× 107A2/3E5

λ(M3) =16A4/3E7

λ(M4) =4.5× 10−6A2E9 .

(2.8)

Here λ is the probability per second of the transition, A is the number of nucleons in the

nucleus and E is the energy of the de-excitation photon in MeV.

The probability per second for the lowest-order electric multipole transitions are [25]:

λ(E1) =1.0× 1014A2/3E3

λ(E2) =7.3× 107A4/3E5

λ(E3) =34A2E7

λ(E4) =1.1× 10−5A8/3E9 .

(2.9)

In the case of a transition between the first 2+ excited state and the 0+ ground state in an

even-even nucleus, the only allowed transition is πλ = E2. For transitions between 2+ states,

e.g. 2+2 → 2+1 , πλ = M1, E2, M3, and E4 are allowed, but due to the relative probability

of the different multipolarities, these transitions proceed by a mixture of M1 and E2 only.
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2.2 Techniques

There are many techniques to measure the strength of the electric quadrupole transition in

a nucleus. Two will be noted here briefly, a third in greater detail.

2.2.1 Excited-State Lifetime Measurements

The probability for the transition per unit time, W
(πλ)
if , between an initial and final state is

related to B(πλ) value in the following way [2]:

Wπλ
i→f =

(
8π (λ+ 1)

λ [(2λ+ 1)!!]2

)(
k2λ+1

ℏ

)
B
(
πλ; ji → jf

)
. (2.10)

With k = Eγ/ℏc, where Eγ is in MeV, and the B(E2) value is in units of e2fm4. The lifetime

of the excited state is τif = 1/Wif , so a measurement of the lifetime of an excited state can

be used to extract its B(πλ) value.

A detailed description of the measurement of the strength of the electric quadrupole

transition in exotic nuclei via lifetime techniques optimized for NSCL beam energies is given

in Philip Voss’ Ph.D. thesis [26].

2.2.2 Proton Inelastic Scattering

Proton inelastic scattering with exotic nuclei is done in inverse kinematics — the target is

typically made of plastic, liquid hydrogen, or frozen hydrogen. The isotope of interest is

accelerated and impinged upon the target. When the target is made of plastic the contri-

bution to the reaction cross section from the carbon in the plastic must be subtracted. The

target excites the nucleus of interest, which then emits de-excitation γ rays (see Fig. 2.1).
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The excitation cross section, given by:

σi→f =
Nγ

NBNT
, (2.11)

which is determined from the number of de-excitation γ rays emitted (Nγ) relative to the

number of target nuclei (NT ) and the number of projectiles incident on the target (NB).

The excitation cross section can be used to determine the shape of the nucleus in a model

dependent way. The parametrization of the shape of the nucleus can be used to infer the

contribution of protons and of neutrons to the deformation, also in a model dependent way.

Proton inelastic scattering is a hadronic probe, so it is sensitive to both the proton and

neutron degree of freedom. The sensitivity (bπ(ν)) to protons or neutrons varies depending

on the energy regime of the probe [27]. The relative sensitivities are given in Tab. 2.1 for

low-energy proton inelastic scattering.

The interactions of all the protons or all the neutrons in a nucleus with an external field

can be treated individually and the operator mediating these transitions expressed as the

sum over all the protons and neutrons in the nucleus [27]:

Oλµ = bν
∑
ν

rλi Y
λ
µ (θi, ϕi) + bπ

∑
π

rλi Y
λ
µ (θi, ϕi) . (2.12)

It is worth noting explicitly that if the probe is electromagnetic (as is the case in Coulomb

excitation), bν = 0, and the probe is only sensitive to the proton degree of freedom. Other-

wise, one can extract the ratio of the neutron transition matrix element (Mν) to the proton
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External Field Energy (MeV) bν/bπ
EM - 0
π 10-50 ≈ 3
ν 10-50 ≈ 1/3
π 100-200 ≈ 1
ν 100-200 ≈ 1

Table 2.1: Sensitivity of probe to nucleon species. At high center of mass energies (≈ 100-200
MeV), the nuclear interior is transparent to the probe and the sensitivity of proton inelastic
scattering to protons and neutrons is the same (bν/bπ ≈ 1) [28].

transition matrix element (Mπ) [28]:

Mν

Mπ
=
bπ
bν

(
δ(p,p′)

δC

(
1 +

bν
bp

N

Z

)
− 1

)
. (2.13)

Here δ(p,p′) is the deformation length extracted from a parametrization of the nuclear defor-

mation and δC is the deformation length extracted from a quantity sensitive to the proton

degree of freedom alone, e.g. the B(E2) value. The δ(p,p′) deformation length is deduced in

a model-dependent way from a calculation of the excitation cross sections. This process will

be discussed subsequently.

2.2.2.1 Extracting the Quadrupole Deformation Parameter

The shape of a deformed nucleus can be expressed in the formalism of the Liquid Drop Model

as the surface vibrations of a liquid drop, or as the rotations of a deformed drop [29, 30]. In

particular, the shape of an axially symmetric, quadrupole deformed nucleus can be expressed

as [30]:

R(θ) = R0

(
1 + β2Y

2
0 (θ, 0)

)
, (2.14)

where R0 = 1.2 fm ·A1/3 is the nuclear radius, β2 is the quadrupole deformation parameter

and is related to the deformation length by δ = β2R0. In the rotational model of the
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nucleus, assuming that the charge is uniformly distributed inside the nucleus, the deformation

parameter can be related to the B(E2 ↑) value by [31]:

β2 =
4π

3ZR2
0

√
B(E2 ↑)/e2. (2.15)

Here, Z is the atomic number of the nucleus and the B(E2 ↑) value is in units of e2fm4. The

deformation parameter obtained from a proton inelastic scattering measurement, β2,(p,p′),

can be extracted from a calculation of the cross section for the reaction, for example by a

coupled-channels calculation.

The calculation of the cross section for a nuclear reaction must include all the excited

states produced by the reaction. To simplify this discussion for proton inelastic scattering,

the assumption is made that the target is made of hydrogen. Discussions of such “coupled

channels” calculations can be found in works by Thompson and Nunes [32] or by Hodgson

[33]. These calculations involve an optical model potential, which has real and imaginary

components and (for proton inelastic scattering) describes a proton-nucleus interaction. The

form of the optical model potential is (c.f. [33]):

V (r) = (U + iW ) f(r, R, a) , (2.16)

where U is the real part of the potential, W is the imaginary part of the potential, and

f(r, R, a) is a Woods-Saxon function (given in Eq. 1.9). The Woods-Saxon parameter R

describes the radius of the system (typically R = r0A
1/3, with r0 = 1.2 fm) and a is

the surface-diffuseness parameter. This simplistic form is not sufficient to describe elastic

scattering data, so optical model potentials such as the one by Koning and Delaroche [34]
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include surface and spin-orbit terms.

In principle, the coupled channels calculation includes all the nuclear states, both bound

and unbound. Of course such a complete description is impossible, so the absorptive imagi-

nary potential is used to account for the states not explicitly included in the calculation.

In the case of axially symmetric quadrupole deformed nuclei, the radius given in Eq. 2.14

is used instead of the unperturbed radius (R) in the optical model potential, and (assuming

the perturbation to the radius is small) the potential becomes:

V (r, θ) = V (r −R)− βRY 2
0 (θ, 0)

dV

dr
. (2.17)

The solutions to the Schrödinger equation describing the projectile-target system are typ-

ically calculated by computer codes, such as FRESCO [35] or ECIS [36, 37]. The quadrupole

deformation parameters are extracted by adjusting their values in the calculation to repro-

duce the excitation cross sections. By this method it is possible to deduce the deformation

parameters, thus the magnitude of the quadrupole deformation, from (p, p′) scattering data.

However, this method is highly model dependent at many different steps.

It is possible to use a probe sensitive only to electromagnetic transitions as a less model-

dependent complementary approach to this hadronic probe. Together, the two probes allow

the determination of the relative contributions to the deformation from both protons and

neutrons. Intermediate-energy Coulomb excitation is one such probe, as it is sensitive only

to electromagnetic transition matrix elements.
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2.2.3 Intermediate-Energy Coulomb Excitation

In intermediate-energy Coulomb excitation in inverse kinematics, a projectile moving with a

velocity between 0.25 ≲ v/c ≲ 0.65 interacts with the Coulomb field of a high-Z target and

the projectile and target can be excited in the process [38]. Intermediate-energy Coulomb

excitation occurs above the Coulomb barrier, so in principle nuclear contributions to the

excitation cross section are possible. For this reason the analysis of intermediate-energy

Coulomb excitation experiments is restricted to small scattering angles corresponding to

large impact parameters. This section discusses one theory describing intermediate-energy

Coulomb excitation.

The experimental cross section (σ0+→2+) for the intermediate-energy Coulomb excitation

of the first excited state with spin-parity 2+ in an even-even nucleus is the number of γ-rays

emitted (Nγ), divided by the number of particles in the beam (NB) and the number of

scattering centers in the target (NT ):

σ0+→2+ =
Nγ

NBNT
. (2.18)

The theory of Alder and Winther [40] for intermediate-energy Coulomb excitation expresses

the excitation cross section as being directly proportional to the observable of interest, the

B(E2) value. Following their formulation, the relationship between the integrated cross

section and the B(E2) value can be deduced:

(
dσ

dΩ

)
=

(
dσ

dΩ

)
Rutherford

Pi→f . (2.19)

The differential cross section is first expressed as the Rutherford differential cross section
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Figure 2.2: Schematic of intermediate-energy Coulomb excitation kinematics. Parameters
discussed in text. Fig. from [1].

(which describes elastic scattering) times the probability for inelastic scattering, Pi→f . The

reaction kinematics are illustrated in Fig. 2.2, where the velocity (v) of the projectile is given

in terms of the speed of light (c), the center of mass scattering angle is denoted by Θ, and

the impact parameter by b. The impact parameter is related to the center of mass scattering

angle by [39]:

b =
a◦
γ

cot

(
θ

2

)
, (2.20)

where γ = 1/
√

1− (v/c)2, and a◦ is the half-distance of closest approach:

a◦ =
ZtZpe

2

µv2
. (2.21)

Here, Zt(p) is the atomic number of the target (projectile), e is the electric charge and µ is

the reduced mass of the projectile-target system.
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Intermediate-energy Coulomb excitation occurs above the Coulomb barrier, where nuclear

effects can contribute to the excitation cross section. If there are nuclear contributions to the

excitation, the measured excitation cross section will not be solely indicative of the strength

of the electric quadrupole transition. In order to restrict the contribution of nuclear effects

to the excitation cross section, the impact parameter for the reaction is typically chosen to

be at least two fermi larger than the sum of the nuclear radii of the projectile and the target

(c.f. Gade et al. [43]):

b = 1.2 fm ·
(
A
1/3
t + A

1/3
p

)
+ 2 fm. (2.22)

this is typically referred to as the minimum impact parameter for safe Coulomb excitation

at intermediate energies.
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Figure 2.3: A plot showing the impact parameter (in log scale) as a function of center of
mass scattering angle (see Eq. 2.20) for a 40Si beam moving with 40% of the speed of light
impinged on a 197Au target.

Figure 2.3 shows the relationship between the center of mass scattering angle and the
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impact parameter for a 40Si beam moving at 40% of the speed of light impinged upon a

197Au target. 197Au, with 79 protons, has a large Coulomb field and is isotopically pure, so

it is a common choice for a Coulomb excitation target.

The excitation probability, Pi→f , is the complex conjugate of the excitation amplitude

and can be evaluated via perturbation theory if the Coulomb potential is time-dependent:

Pi→f =
∣∣ai→f

∣∣2
ai→f =

1

iℏ

∫ ∞

−∞
dteit∆E/ℏ ⟨f |VC (r⃗(t)) |i⟩ .

(2.23)

Here, ai→f is the amplitude of the excitation, where ∆E = Ef − Ei, with Ei(f) the energy

of the initial (final) state, and VC(r⃗(t)) is the time-dependent Coulomb potential.

The reason for insisting that the minimum impact parameter be larger than two nuclear

radii is clearly seen — the perturbation of the excitation amplitude depends explicitly on the

assumption that the time-dependent Coulomb potential is the only non-negligible potential

involved in the reaction. If this is the case, one can then expand the time-dependent Coulomb

potential in terms of its multipole moments (M(πλµ)) [40]:

χπλi→f ≃ Zte

ℏcbλ
⟨f |M (πλµ) |i⟩ . (2.24)

As before, π = E for electric transitions, π = M for magnetic transitions, λ is the multipo-

larity of the transition, and µ is the projection of the multipolarity. The excitation amplitude

is summed over the entire expansion:

ai→f = i
∑
λ

χλi→ffλ (ξ) . (2.25)
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The function fλ(ξ) characterizes the adiabaticity of the reaction in terms of the adiabatic

parameter ξ, which will be discussed in some detail subsequently.

Expanding the excitation amplitude, Alder and Winther obtain:

ai→f = −iZte
2

ℏvγ
∑
πλµ

Gπλµ

( c
v

)
(−1)µKµ (ξ (b))

√
2λ+ 1kλ

⟨JfMf |M (πλ− µ) |JiMi⟩
e

.

(2.26)

Here Kµ are modified Bessel functions of the second kind, k = ∆E/(ℏc). M(πλ−µ) are the

multipole matrix elements for electric or magnetic excitation (give in [40]). The excitation

strength functions, GEλµ and GMλµ are given (for µ ≥ 0) by:

GEλµ

( c
v

)
= iλ+µ

√
16π

λ(2λ+ 1)!!

(
(λ− µ)!

(λ+ µ)!

)1
2
(( c

v

)2
− 1

)−1
2

×
(
(λ+ 1)(λ+ µ)

2λ+ 1
P
µ
λ−1

( c
v

)
− λ(λ− µ+ 1)

2λ+ 1
P
µ
λ+1

( c
v

))
.

(2.27)

for electric excitations, where P
µ
λ are the associated Legendre polynomials. For magnetic

excitations,

GMλµ

( c
v

)
= iλ+µ+1

√
16π

λ(2λ+ 1)!!

(
(λ− µ)!

(λ+ µ)!

)1
2
(( c

v

)2
− 1

)−1
2

µP
µ
λ

( c
v

)
(2.28)

The excitation functions for µ < 0 are related to those for positive µ by:

GEλ−µ = (−)µGEλµ

GMλ−µ = −(−)µGMλµ

The integrated cross section is calculated by summing the excitation probability over all

34



magnetic sub-states and integrating the result from the minimum impact parameter, bmin,

to ∞:

σi→f = 2π

∫ ∞

bmin

bdb
1

2ji + 1

∑
mi,mf

∣∣ai→f

∣∣2 . (2.29)

Integrating over the range of impact parameters leads to:

σi→f =

(
Zte

2

ℏc

)2∑
πλµ

k2(λ−1)B
(
πλ; ji → jf

)
e2

∣∣∣Gπλµ

( c
v

)∣∣∣2 gµ (ξ (bmin)) (2.30)

The total cross section for intermediate-energy Coulomb excitation to a state is given by the

sum of all of the allowed multipole components of the transition [38]:

σi→f =
∑
πλ

σπλ . (2.31)

With σπλ is given by [38]:

σπλ ≈

(
Zpe

2

ℏc

)2
π

e2b2λ−2
min

B(πλ; 0 → λ)


(λ− 1)−1 : for λ ≥ 2

2 ln(ρa/bmin) : for λ = 1.

(2.32)

Here, ρa is the impact parameter corresponding to the adiabatic cutoff for intermediate-

energy Coulomb excitation:

ρa =
γℏcβ
Eγ

, (2.33)

where Eγ is the excited state energy.
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2.2.3.1 Adiabaticity of the Reaction

ξ is the adiabatic parameter and is proportional to the ratio of the time elapsed during

the collision between the stationary target and the projectile moving past the target with

velocity vp (τcoll = b/γvp) and the characteristic time of the nuclear motion (τnucl = ℏ/∆E)

[40, 41]:

ξ(b) =
τcoll
τnucl

=
∆E

γℏvp
b . (2.34)

This expression of the adiabatic parameter highlights two assumptions of the Alder-Winther

theory. The first is that the projectile travels on a straight-line trajectory past the target,

while the second is that the projectile spends a time τcoll in the electric field of the target.

Esbensen [42] devised a more realistic model for Coulomb excitation, including distortions

due to Coulomb effects to the straight-line trajectory in the calculation. At sufficiently high

beam energies (within the energy regime used for this work) the results converge with the

straight-line trajectory used in [40].

The impact parameter must be adjusted such that b→ b+ 1
2πa◦, because the half-distance

of closest approach (a◦) is increased by Coulomb repulsion [40]. This re-scaling of the impact

parameter is meant to account for the Coulomb distortion to the trajectory, which will cause

the trajectory to deviate from a straight line. In this model the adiabaticity parameter is

given by:

ξ(b) =
∆E

ℏγvp

(
b+

π

2

a◦
γ

)
. (2.35)

As shown in Fig. 2.4, the effect of this correction is small for beam energies used in this

work (≈ 80 MeV/u). ξcor/ξ ≃ 1.1 − 1.15 in for these beam energies, suggesting that the

assumption of the straight-line trajectory is valid.
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Figure 2.4: Comparison of the effect on the adiabatic parameter from the correction to the
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Figure 2.5: Total cross section as a function the adiabatic parameter, ξ. The calculation is
for 40Si at 80 MeV/u on 197Au.
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Figure 2.6: gµ functions necessary to calculate the Coulomb excitation cross section for an
E2 transition. The functions are normalized such that gµ = 1 for ξ = 0. Fig. after [40].

The remaining function in the Coulomb excitation cross section (equation 2.30) is gµ (ξ (bmin)),

which measures the adiabaticity of the reaction and depends on the impact parameter, bmin

(equation 2.22). Alder and Winther express gµ as an integral of modified Bessel functions

of the second kind, Kµ, over the impact parameter:

gµ (ξ (bmin)) = 2π

(
Ef − Ei

vℏγ

)2 ∫ ∞

bmin

bdb
∣∣Kµ (ξ (b))

∣∣2
= πξ2

[∣∣Kµ+1 (ξ)
∣∣2 − ∣∣Kµ (ξ)

∣∣2 − 2µ

ξ
Kµ+1 (ξ)Kµ (ξ)

]
gµ = g−µ

(2.36)

as µ is the projection of the multipolarity, it runs in steps of 1 from −λ to λ. Thus, for

an E2 transition, one only need calculate g0,1,2. Fig. 2.6 shows dependance of g0,1,2 on ξ.

The crossing time between the target and projectile deceases with increasing beam energy,
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Figure 2.7: Intermediate-energy Coulomb excitation excitation cross section, σ0+→2+ , as a
function of beam energy. The calculation is for 40Si on 197Au (recall that the cross section
for an electric quadrupole transition is directly proportional to the B(E2) value for a given
scattering angle) and Eγ ≃ 1 MeV.

so the cross section for intermediate-energy Coulomb excitation is inversely proportional to

the beam energy, as shown in Fig. 2.7.

2.2.4 Intermediate-Energy Coulomb Excitation as a Probe of the

B(E2) Value

The accuracy of the Alder-Winther formulation of the excitation cross section in intermediate-

energy Coulomb excitation as a probe of the B(E2) value has been questioned by Bertulani

et al. ([45]) who suggested that Coulomb distortion and retardation effects cause discrep-

ancies on the order of 30% between the Alder-Winther theory and a formulation in which

these effects are considered. However, Scheit et al. ([46]) point out that this discrepancy is
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due to a misunderstanding on the part of Bertulani et al. as to whether the scattering angle

presented in the experimental papers cited in [45] were in the center of mass or laboratory

frame. In addition, Bertulani et al. use the incident beam energy rather than the half-target

beam energy in the calculation Coulomb excitation cross section. When the correct val-

ues are used, Scheit et al. found excellent agreement between the Alder-Winther theory of

Coulomb excitation and the formulation presented by Bertulani et al.. Subsequent papers

by Esbensen [42] and by Kumar et al. [47] agree.

However, Scheit et al. agree with Bertulani et al. that a fully relativistic approach to

Coulomb excitation, which does not make the approximation of a straight-line trajectory, is

likely necessary for high-precision Coulomb excitation experiments (such an approach is pre-

sented by Esbensen [42]) but suggest that uncertainties introduced by these approximations

are not likely to affect the current ensemble of data from lower precision, statistics-limited

Coulomb excitation experiments with exotic nuclei.

From an experimental perspective, the current generation of intermediate-energy Coulomb

excitation experiments agree quite well with other probes. Cook et al. [48] compared the

B(E2) values obtained from intermediate-energy Coulomb excitation with those obtained

from other probes for eight different nuclei and found excellent agreement between the value

obtained from intermediate-energy Coulomb excitation and the adopted value, as shown in

Fig. 2.8.

40



-50

-25

0

25

50

75

100

125

150

175

200

225

250

40
Ar

36
Ar

24
Mg

30
S

78
Kr

58
Ni

76
Ge

26
Mg

Intermediate-energy 
Coulomb excitation
Adopted value

(a)

Adopted value
Coulomb excitation
Resonance !uorescence
Doppler shift attenuation
Recoil distribution
Electron scattering
Intermediate-energy 
Coulomb excitation

Mg
26(b)

e
xp

B
(E

2
  )

   
   

/ 
B

(E
2

  )
   

   
   

   
   

   
 1

   
(%

)
a

d
o

p
te

d

-50

-25

0

25

50

75

100

125

150

175

200

225

250

Figure 2.8: Panel (a): Comparison of the adopted B(E2) value and that obtained from
intermediate-energy Coulomb excitation. Panel (b): Comparison of the B(E2) for 26Mg
obtained from intermediate-energy Coulomb excitation and other probes. See [48] for the
sources of the values plotted in this figure.
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Chapter 3

Experimental Apparatus

As discussed in the first chapter, the experiments which provide the most stringent tests of

nuclear models typically study nuclei which do not exist in nature and have to be produced

artificially. At NSCL, these nuclei are produced by fast fragmentation. In this process,

a stable beam (called the primary beam) is accelerated to a velocity of about 50% of the

speed of light and impinged on a thick target, usually made of 9Be. The products of the

fragmentation reaction are separated according to their mass and charge by a Bρ−∆E−Bρ

method and a particular species of nuclei (called the secondary beam) or an ensemble of

nuclear species (a secondary cocktail beam) are selected from all the produced fragments.

The nucleus of interest is transmitted to an experimental station where its reaction with

a target can be studied. In intermediate-energy Coulomb excitation, the nucleus of interest

is produced in the fragmentation of the primary beam, selected by the A1900 Fragment

Separator ([51, 52]), transported to an experimental station (in this work, the S800 Spec-

trograph [53]), and focused at a secondary, high-Z target. If the projectiles are excited by

the target (or vice versa), the excited state will decay and emit a de-excitation γ-ray, which

has a chance of being detected by the high-efficiency scintillator array (CAESAR, [54]) po-
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Figure 3.1: A schematic of the Coupled Cyclotron Facility at NSCL. The central path of the
beam, from an ion source to the cyclotrons to the A1900 Fragment Separator is highlighted
in red. Figure is modified from [69].

sitioned around the secondary excitation target. The reaction products are detected on an

event-by-event basis by the focal plane detector system of the S800 Spectrograph [55]. All

of these systems will be discussed in some detail in this chapter.

3.1 Beam Production

A stable beam is prepared by ionizing the atoms of a stable isotope in an electron cyclotron

resonance (ECR) ion source, injecting the (usually singly- or doubly-) ionized isotope into

the K500 cyclotron, accelerating it to ≃15% of the speed of light, and injecting it into the

K1200 cyclotron where it is further stripped and accelerated to about 50% of the speed of

light. The accelerated and stripped1 primary beam is impinged on a thick production target,

usually 9Be. The resulting nuclei produced by the fragmentation of the primary beam are

filtered by the A1900 Fragment Separator, which is tuned to select the isotope of interest.

This isotope is transmitted to an experimental station for measurement. A schematic of the

1The 48Ca primary beams used in this work were fully stripped, but it is not possible to fully
strip much heavier beams at NSCL energies, see [49].
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devices involved in this process is shown in Fig. 3.1.

3.1.1 Primary Beam Preparation

The production of a primary beam begins in an ion source (see Fig. 3.1). If the atom used

to produce the primary beam is not gaseous, it is heated in an oven until it vaporizes and

then the plasma is injected into a magnetic bottle inside the ion source. The 48Ca primary

beam used for all the experiments discussed in this work was prepared from a solid block

of metallic 48Ca. Once the gas is in the ion source, it is bombarded by electrons, which are

accelerated by microwave radiation. The resonant frequency (ω) of the cavity is given by:

ω =
eB

me
, (3.1)

where e is the electron charge, B is the applied magnetic field and me is the rest mass

of an electron. The electrons collide with the atoms in the gas and ionize the atoms. The

ionized gas is injected into the K500 cyclotron by the application of a bias voltage. The ECR

ion source method produces beams that are doubly or singly ionized, so further ionization

is accomplished by means of a carbon “stripper foil” placed in the middle of the K1200

cyclotron. Each time the beam passes through the stripper foil it can become more highly

ionized.

The K500 and K1200 cyclotrons take advantage of the fact that the radius of curvature ρ

for the path of a particle with charge q and mass m moving with a velocity of v in a magnetic

field of strength B is:

ρ =
γmv

qB
. (3.2)
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Any increase in the velocity or in mass will increase the radius of curvature of the particle’s

path. The K500 and K1200 cyclotrons apply a magnetic field strong enough to constrain

particles to move in a circle (between 3-5 Tesla). Each cyclotron has 3 “dees” and three

“hills” (see Fig. 3.2). A strong RF field is applied across the gap each time the beam

traverses the gap between the dee and the hill. The momentum (p) of the particle is given

by:

p = mγβc . (3.3)

It is common to refer to the magnetic rigidity or simply rigidity of the beam as (re-arranging

Eq. 3.2):

Bρ =
p

q
=
γβmc

q
, (3.4)

The 48Ca primary beams used for this work were produced at an energy of 140 MeV/u and

an intensity of 80 particle-nano Amps (about 5 × 1011 particles per second). The intensity

of the primary beam is measured sporadically by a Faraday cup after extraction.

3.1.2 Secondary Beam Selection

Once the primary beam has been accelerated to the desired energy, it is extracted from

the K1200 cyclotron and impinged on a thick 9Be production target. The primary beam

is selected based on the probability of producing the isotope of interest in fragmentation,

commonly through the use of the LISE++ program [56], which simulates the fragmentation

reaction and subsequent isotopic selection in the A1900 Fragment Separator. The maximum

magnetic rigidity of the devices is 6 Tm and the maximum rigidity of the secondary beams

used in this work was ≈ 4.04 Tm.

The A1900 Fragment Separator is composed of 44 magnetic elements, four 45◦ dipole
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Figure 3.2: A schematic of the K500 cyclotron. The dees are shown in red, the hills in blue.
An accelerating voltage is applied between the dee and the hill, so each time the ionized
beam crosses this gap it is accelerated. Figure is modified from [69].
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bending magnets and 40 large-diameter multipole focusing magnets [51, 52]. The dipole

magnets disperse the beam according to its rigidity (see Eq. 3.4). The magnetic field can be

tuned to select the mass-to-charge ratio of the particle of interest. The multipole focusing

magnets located after the dipole magnets re-focus the beam after dispersion.

Unambiguous particle selection cannot be accomplished by mass-to-charge selection alone;

particles with the same ratio and velocity will not be spatially separated by the dipole mag-

nets. For this reason, an aluminum or Kapton “wedge”2 is inserted at the mid-acceptance

position of the A1900 (see Fig. 3.1). Particles moving through material lose energy through

interactions with the electrons in the material. This energy loss is described by the Bethe

formula [58]:

−dE
dx

=
4πe4Z2

p

mev2
NZt

[
ln

(
2mev

2

I

)
− ln

(
1− v2

c2

)
− v2

c2

]
. (3.5)

The distance the beam travels through the material is represented by x, N , I, and Zt are

respectively the number density, mean excitation potential, and the atomic number of the

absorbing material. Zp is the atomic number of the projectile, e is the electron charge, and

me is the electron rest mass. The energy loss is thus proportional to the square of the atomic

number of the beam: dE/dx ∝ Z2
p , so the fragments lose energy in the wedge depending on

their atomic number, allowing the two remaining dipoles to select the species of interest. A

thin plastic scintillator is located at the focal plane of the A1900. This scintillator is used

in conjunction with a downstream scintillator to measure the time-of-flight of the particles

in the beam on an event-by-event basis. The time-of-flight depends on the momentum of a

particle and, together with the measured energy loss of the particle allows an unambiguous

2the nomenclature is somewhat misleading — the “wedge” actually has a curved profile, so that
the A1900 Fragment Separator is achromatic [57].
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Figure 3.3: A schematic of the S800 Spectrograph showing the location of the object and
target positions and the focal plane. Figure from [59].

A,Z identification for each particle. The beam is then directed onto the intermediate-energy

Coulomb excitation target, located at the target position of the S800 Spectrograph.

3.2 The S800 Spectrograph - Particle Detection

The S800 Spectrograph is a high-resolution, high-acceptance spectrograph, composed of the

analysis line and the spectrograph (see Fig. 3.3). The analysis line is used to tune the beam

to the target and to characterize the incoming beam. The maximum rigidity of the analysis

line is 4.9 Tm [53]. The spectrograph is used to direct the reaction products to the focal

plane, where the position, energy loss, and time-of-flight of each particle are measured. The

angular acceptance of the spectrograph is about ±5◦ in the non-dispersive direction and

±3.5◦ in the dispersive direction, amounting to a solid angle coverage of about 20 msr [55].

The energy resolution of the spectrograph is about ∆E/E ≈ 10−3 [60].
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The beam incoming from the A1900 is focused at the object position, where a thin plastic

scintillator (typically 125 µm thick) is located for time-of-flight measurements. The analysis

line was operated in the achromatic “focused mode” for this work, so the beam was focused

at the target position and dispersed in the x direction at the focal plane. In focused mode,

the beam spot on the target is quite small, so the momentum acceptance of the A1900 can

be as large as ∆p/p = ± 2%. The analysis line can also be operated in “dispersion matched”

mode, in which the beam is dispersed at the target position according to its momentum, as

discussed in [60].

A high-Z target for intermediate-energy Coulomb excitation was located at the target

position of the S800. The target is followed by a quadrupole focusing doublet, to re-focus the

beam in x and y after interacting with the target, and by two dipole magnets which disperse

the components of the beam according to their mass-to-charge ratio (see Sec. 3.1.2). The

magnets after the target are tuned to select the experimental reaction channel of interest,

typically by calculating the rigidity of the nucleus of interest after the target (e.g. 34Si with

an energy of ≈ 84 MeV/u before the 518 mg/cm2 thick 197Au target will have an energy

of ≈ 76 MeV/u after the target, so the rigidity of the S800 will be set to ≈ 3.11 Tm). The

maximum rigidity of the spectrograph is 4 Tm. The beam is directed up to the S800 focal

plane, where an ensemble of detectors measure its position, time-of-flight and energy loss on

an event-by-event basis.

3.2.1 The S800 Focal Plane

The S800 focal plane contains a number of detectors (see Fig. 3.4) which are used to obtain

information about the reaction at the target position [55]. First, the reaction product passes

through two Cathode Readout Drift Chambers (CRDCs), spaced a meter apart, which mea-
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Figure 3.4: Schematic of the S800 focal plane showing the detectors used in this work. Figure
is courtesy of S. McDaniel [61].

sure the x and y position of the particle (see Fig. 3.4 and Fig. 3.5). The positions measured in

the CRCDs are used to determine the particle’s trajectory, which is then used to reconstruct

the scattering angle at the target. The reaction product then passes through an ionization

chamber, which measures energy loss in order to determine the atomic number of the reac-

tion product, as discussed in Sec. 3.1.2. The reaction product finally passes through a thin

plastic scintillator (the “e1 scintillator”) which provides a time-of-flight signal relative to

other timing detectors upstream and triggers the data acquisition for S800 events. The mea-

surements made in the focal plane detectors of the S800 provide unambiguous identification

of the particle by its atomic number and mass.
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of a particle is indicated by the yellow arrow, the central trajectory by the dashed line. The
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3.2.1.1 Cathode Readout Drift Counters - Position and Tracking

As discussed in Sec. 2.2.3, the nuclear contribution to the intermediate-energy Coulomb

excitation cross section is negligible if the impact parameter is larger than two nuclear radii

+ 2 fm (see Eq. 2.22). As Eq. 2.20 shows, the minimum impact parameter is related to a

maximum scattering angle. The scattering angle is calculated on an event-by-event basis by

measuring the (x,y) position of particles in the CRDCs, located in the focal plane of the

S800, and reconstructing the trajectory of each particle back to the target.

Each CRDC has a position resolution of about 0.5 mm in the dispersive and non-

dispersive directions [60]. These detectors are 56 cm in the x (dispersive) direction by
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26 cm in the y (non-dispersive) direction, with an active depth of 1.5 cm [55]. The CRDCS

are filled with a gas mixture of 20% isobutane and 80% carbon tetrafluoride at a pressure of

50 Torr [60]. A negative bias voltage (called the drift voltage) is applied across the CRDC

in the y direction. The fill gas is ionized by a projectile and the ionization electrons drift

towards the anode wire, which is held at a positive voltage, where they are collected.

The anode wire is bordered by a cathode, which is segmented into 224 pads, each 2.54 mm

wide [55]. The charge drifting toward the anode wire induces image charges on the cathode

pads. The position of an interaction in the dispersive (x) direction is determined by fitting a

Gaussian distribution to the measured charge deposition on the pads. The x position is then

taken to be that of the pad most closely matching the centroid of the Gaussian distribution.

The y-position of the interaction between a projectile and the fill gas is calculated from the

drift time of the electrons to the anode wire by measuring the difference in time between the

signal from the anode wire and the signal from the e1 scintillator. The drift time (typically

0-20 µs [62]) depends on the distance between the ionization electrons and the anode wire,

the drift voltage, and the condition of the fill gas. The CRDCs must be calibrated during

the experiment. This is done by inserting thick tungsten masks with known (x,y) positions

in front of each CRDC (Fig. 3.6 shows a typical spectrum taken for such a calibration).

The drift time is calibrated by a linear fit of the measured position of the holes in the mask

to their known positions. As the experiment progresses, the drift time can shift due to

changes in the pressure, temperature, or composition of the fill gas. For this reason, mask

calibrations were taken periodically during the measurements discussed in this work. The

slope of the linear function obtained from the mask calibration was adjusted on a run-by-run

basis (each run was about 30 minutes long) to shift the centroid of the measured CRDC drift

time spectrum for each run to that of a reference run. A comparison of run-by-run corrected
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Figure 3.6: Mask calibration from the 40Si data set. The matrix shown was taken with the
tungsten mask inserted in front of CRDC 1. The localized intensities correspond to holes
and slits in the mask.

and un-corrected CRDC y spectra is shown in Fig. 3.7.

The CRDCs begin to lose efficiency for beam rates above about 5,000 particles per second

(pps) and high beam rates can damage the CRDCs [53]. If necessary, the primary beam is

attenuated to ensure that the number of particles incident on the CRDCs does not exceed

this limit.

3.2.1.2 Trajectory Reconstruction in the S800

Because the S800 Spectrograph is a high-acceptance device, particles with different combi-

nations of momentum and trajectory will reach the focal plane. The time-of-flight of these

particles will vary, so in order to determine the scattering angle of each particle at the target
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position it is necessary to first reconstruct the particle’s trajectory. This is accomplished

by calculating the position and angle of the particle in the focal plane and using an ion

optics code (COSY Infinity [63]) to reconstruct the trajectory of the particle through the

spectrograph back to the target.

Once the (x,y) positions in each CRDC have been obtained they can be used to calculate

angles in the focal plane. The dispersive and non-dispersive angles are, respectively:

afp = ArcTan

[
crdc2.x− crdc1.x

gap

]
bfp = ArcTan

[
crdc2.y − crdc1.y

gap

]
,

(3.6)

where gap = 1000 millimeters and the crdc.1(2).x(y) positions are measured in millimeters.
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The positions are given by:

xfp =
crdc1.x

gap

yfp =
crdc1.y

gap
,

(3.7)

The positions and angles at the target are reconstructed by means of an inverse map (S−1)

produced by COSY Infinity, which relates the positions measured and angles calculated at

the focal plane to positions at the target by the matrix equation [62]:



ata

yta

bta

dta


= S−1



xfp

afp

yfp

bfp


. (3.8)

Here ata and bta are the dispersive and non-dispersive angles reconstructed at the target,

respectively. The reconstructed y position at the target is given by yta and dta is the

fractional deviation in kinetic energy of the particle (E) from the expected kinetic energy of

the same particle taking the central path through the spectrograph (E0): dta = (E−E0)/E0.

The calculation of these inverse maps has been automated. The necessary inputs are the

currents supplied to the magnets in the spectrograph, the magnetic rigidity of the spectro-

graph, the mass and charge of the particle of interest and the shift in focus at the target and

in the focal plane (if any).

Then the dispersive and non-dispersive angles reconstructed at the target are used to

calculate the laboratory scattering angle (θ) in milliradians:

θ = ArcSin

[√
Sin2 (ata) + Sin2 (bta)

]
(3.9)
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Sin(ata) Sin(bta) ϕ

> 0 > 0 ArcTan
[
sin(ata)
sin(bta)

]
< 0 > 0 π - ArcTan

[
sin(ata)
|sin(bta)|

]
> 0 < 0 2π - ArcTan

[
|sin(ata)|
sin(bta)

]
= 0 = 0 0

Table 3.1: The value of the azimuthal scattering angle depends on the sine of the dispersive
and non-dispersive angle. The azimuthal scattering angle is calculated in radians.

The calculation of the azimuthal scattering angle is a little more complicated, as shown in

Tab. 3.1.

3.2.1.3 The Ionization Chamber - Energy Loss for Particle Identification
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Figure 3.8: Plots of the un-calibrated (panel a) and calibrated (panel b) energy-loss mea-
sured in the ionization chamber are shown as a function of the ionization chamber segment
measuring the energy loss. Segment 6 was malfunctioning, it was turned off and omitted
from the analysis. The data shown are from the 40Si data set.

An ionization chamber is located in the focal plane of the S800 to measure energy loss

of the reacted beam [55]. The ionization chamber is 16 inches long and is segmented into

16 one-inch anodes, with anode one most downstream and anode 16 most upstream. The
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ionization chamber is filled with a mixture of 90% argon and 10% methane gas (a standard

mixture called “P10”) at a pressure of 140 Torr. The traversing particle creates electron-ion

pairs in the gas, the positively charged ions of the fill gas are collected on the cathode while

the electrons are collected on the anodes. The energy loss of a particle moving through

material is related to the square of the charge of the particle (Eq. 3.5), so measuring the

energy deposited by the particle allows the atomic number of the particle to be determined.

The energy loss spectrum measured in the first segment of the ionization chamber is used

as a reference and the energy loss spectra measured in the successive segments of the ioniza-

tion chamber are aligned with that of the first segment by a linear function. Fig. 3.8 shows

the results of such an alignment procedure for the 40Si data set. Segment six was malfunc-

tioning during the first experiment, so it was turned off and omitted from the analysis of the

Coulomb excitation of 34−40Si. The ion chamber described was replaced prior to the exper-

iment measuring the Coulomb excitation of 42Si with one segmented into 32 cathode-anode

pairs (16 of each), which ran perpendicular to the direction of the beam. This ionization

chamber is much faster than the one used in the intermediate-energy Coulomb excitation

of 34−40Si, as the electrons and ionized fill gas have to drift a much shorter distance before

being collected.

The total energy lost in the ionization chamber (ic.sum) is calculated to be the sum of

the energy lost in each of the aligned segments (ic.cal.i) in the ionization chamber:

ic.sum =
16∑
i=1

ic.cal.i (3.10)

57



3.2.1.4 The E1 Scintillator - Time of Flight and Triggering

Downstream of the ionization chamber there is a large area (30×59 cm) thin (3 mm thick)

plastic scintillator [60] which measures the time of flight difference with respect to an up-

stream scintillator. The e1 scintillator has photomultiplier tubes positioned at the top and

bottom, which give energy, position and timing information for a particle. In this analysis

the e1 scintillator was only used to provide timing information and the trigger for events in

the S800 focal plane.

3.3 Gamma-ray Detection

One important decay mode for reaction products created in an excited state by a nuclear

reaction in the target is the emission of γ rays. For example, in the intermediate-energy

Coulomb excitation experiments discussed in this work, the incoming even-even nuclei of

interest were excited from the 0+ ground state to the first 2+ state and emitted a prompt

de-excitation γ ray with energy characteristic of the excited state. For some cases, the

number of de-excitation γ rays emitted was quite low, depending on the secondary beam rate

and the cross section for the reaction of interest. In addition, the velocity of the secondary

beam particles was between 0.3 and 0.4 c, meaning that the energy of the de-excitation γ rays

(which is fixed in the rest frame of the particle) is detected with an angle-dependent Doppler-

shift in the laboratory frame. These conditions demand a γ-ray spectrometer with optimized

detection efficiency and a sufficient granularity for reconstructing the Doppler-shifted γ-ray

energies back into the projectile’s rest frame.
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Figure 3.9: Schematic description of the photoelectric effect. A γ ray incident from the left
knocks an electron from the atomic shell. The relative sizes of the nucleus and the atom are
not drawn to scale. Figure after [58].

3.3.1 Interaction of Gamma-Rays with Matter

The γ rays with energies of interest in a γ-ray spectroscopy experiment interact with the

detector material via the photoelectric effect, Compton scattering or pair production. These

interaction channels depend both on the energy of the γ ray and the atomic number of the

absorbing material.

3.3.1.1 The Photoelectric Effect

The photoelectric effect is the primary interaction channel for γ rays with energy between

10 keV and 500 keV for the detector material used in this work (see Fig. 2.20 of [58]). If a

γ ray interacts with matter via the photoelectric effect, the γ ray is completely absorbed by

an atom in the material (see Fig. 3.9), which emits a photoelectron with energy Ee− :

Ee− = Eγ − Eb , (3.11)
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where Eb is the binding energy of the atomic shell from which the electron was ejected. The

probability per atom for absorption via the photoelectric effect can be approximated as [58]:

τ ≈ const
Zn

E3.5
γ

(3.12)

the value of n depends on the γ-ray energy and increases from about 4 at 100 keV to 4.6 at

3 MeV [64].

3.3.1.2 Compton Scattering

In Compton scattering, a γ ray carrying energy Eγ elastically scatters off a quasi-free electron

in the absorbing material, imparting some of its energy to the recoil electron and continuing

to propagate as a scattered γ ray carrying energy E′
γ :

1

E′
γ
− 1

Eγ
=

1

mec2
(1− cos θ) . (3.13)

The process is shown in Fig. 3.10, with the scattering angle of the γ ray given by θ.

The energy deposited in the absorbing material from a Compton-scattered γ ray is at a

minimum of E′
γ = 0 MeV when the scattering angle θ = 0◦ and varies continuously up to a

maximum energy. These highest-energy Compton-scattered γ rays scatter with an angle of

θ = 180◦ and are said to form the Compton edge of the γ-ray spectrum. Evaluating Eq. 3.13

at θ = 180◦ gives the energies of the highest-energy scattered γ rays as:

E′
γ(180

◦) = ECE =
Eγ

1 +
2Eγ

mec2

. (3.14)

Compton-scattered γ rays with scattering angles 0◦ ≤ θ ≤ 180◦ have energy between 0
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Figure 3.10: Schematic description of Compton scattering. The γ ray is incident from the
left. Figure after [58].

and ECE MeV. These γ rays form the Compton Plateau or Compton Continuum in the

characteristic spectrum measured with a γ-ray detector, illustrated in Fig. 3.12.

A γ ray can Compton scatter, imparting some of its energy to an electron, and subse-

quently be completely absorbed via the photoelectric effect. As a practical matter, as long

as all the interactions happen in the same detector the γ-ray energy will be counted in the

full-energy peak. An algorithm for recovering the energy of γ rays that scatter out of one

detector and deposit a fraction of their energy in a neighboring detector will be discussed in

a later section.

3.3.1.3 Pair Production

For γ rays with an energy higher than twice the electron rest mass ( 2me =1.022 MeV) there

is a probability that the γ ray will interact with the electric field of the nuclei in the absorber
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Figure 3.11: Schematic description of pair production in the electric field of a nucleus. The
γ ray is incident from the left. Figure after [58].

material by producing an electron-positron pair. Energy conservation gives:

Eγ = (Te− + Te+)− 2mec
2 (3.15)

for the γ-ray energy, where T is the kinetic energy of the electron or positron. The probability

of pair production is small for low-energy γ rays, but becomes the dominant interaction

mechanism for γ rays with energies in excess of several MeV3. A positron is the anti-particle

of an electron, so if an electron and positron collide, they will be annihilated and in the

process emit two γ rays with an energy of Eγ = 511 keV traveling in opposite directions,

as shown in Fig. 3.11. If the energies of the electron and positron are deposited in the

detector, and the photons created in the annihilation of the positron escape the detector,

the γ-ray spectrum measured in the detector will exhibit a double escape peak which has

energy EDE = Eγ − 2mec
2 (see Fig. 3.12). If only one of the annihilation photons escapes

3For Caesium Iodide, the material used to make the CAESAR detectors, pair production is the
dominant interaction mechanism for γ rays with energies in excess of ∼ 6 MeV. See Fig. 2.20 in
[58].
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Figure 3.12: Cartoon of a γ-ray spectrum measured in a detector showing characteristic
features from various interactions. The energies (Ex) are discussed in the text. Figure after
[58].

the detector, the result is a single escape peak, whose signature is a peak at an energy given

by ESE = Eγ −mec
2.

Figure 3.12 shows a γ-ray spectrum with characteristic features of the various interactions

discussed in these sections.

3.3.2 The Doppler Shift

When a γ ray with energy Eγ is emitted by a source moving at a relativistic velocity v with

respect to the laboratory frame, the energy of the γ ray measured in the laboratory frame

will be Doppler-shifted with respect to the original energy according to:

Eγ = Elab
γ · γ (1− β cos θ) (3.16)

63



0 30 60 90 120 150 180

0.8

1.0

1.2

1.4

Laboratory Scattering Angle [degrees]

E
  

  
/E

γ
γ

la
b

Figure 3.13: The ratio of the γ-ray energy measured in the lab frame (Elab
γ ) to the γ-

ray energy measured in the rest frame of the projectile (Eγ) plotted as a function of the
laboratory angle between the γ ray and the scattered projectile. Figure after Glasmacher
[38].

where β = v/c is the velocity of the source (v) with respect to the speed of light (c), and θ

is the angle measured with respect to the direction of the projectile from which the γ ray is

emitted.

The convention is to refer to the frame in which the projectile is at rest as the rest frame

of the projectile, and to the frame of the stationary observer as the laboratory frame.

Figure 3.13 shows the relationship between Eγ and Elab
γ for a γ ray detected at the angle

θ (measured in the laboratory frame) between the emitted γ ray and the scattered projectile.

As Eq. 3.16 suggests, an observer in the laboratory frame forward of the source will measure

a higher energy for emitted γ rays than will an observer in the laboratory frame behind the

source.
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3.3.2.1 Energy Resolution and Doppler Broadening

In the intermediate-energy Coulomb excitation of even-even nuclei, one only expects to excite

the first 2+ excited state, as discussed in Sec. 2.1. Thus, after a Doppler correction is applied

to the γ ray spectra, one expects to see a single peak corresponding to the prompt in-flight

decay of an excited state in the projectile. The energy resolution of the γ-ray spectrometer

used in such experiments must be sufficient to distinguish between γ rays emitted in-flight by

the de-excitation of an excited state in the projectile, or γ rays created by atomic processes

[65], and (in some cases) γ rays emitted in the laboratory frame by excited states in the

target.

The energy resolution of a detector is often given in terms of the full width at half

maximum (FWHM) of a peak in the spectrum [66]:

R = ∆E/E, (3.17)

where ∆E is the FHWM of the peak located at an energy E. For the detectors used in this

work, the energy resolution goes as [66]:

R ∝ 1√
Eγ

, (3.18)

for a γ ray with energy Eγ . However, following Eq. 3.16, γ rays emitted with an energy Eγ in

the rest frame of the projectile will be detected in the laboratory frame with an energy Elab
γ .

Uncertainties in the velocity of the projectile emitting the γ ray (∆β) and the angle between

the emitted γ ray and the scattered particle (∆θ) contribute to the Doppler broadening, as
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given by [38]:

(
∆Eγ

Eγ

)2

=

(
β sin θ

1− β cos θ

)2

(∆θ)2 +

(
cos θ − β(

1− β2
)
(1− β cos θ)

)2

(∆β)2 +

(
∆Eintr

Eγ

)2

.

(3.19)

It is instructive to examine the individual contributions to the total energy resolution, as is

done in [38]:

1. ∆β is the uncertainty in the velocity of the projectile at the time of γ-ray emission.

For excited states with short (less than ∼ 1 ps) lifetimes, the γ-ray decay can happen

anywhere in the target, therefore ∆β is given by the projectile’s energy loss in the

target expressed in units of β.

2. ∆θ is the uncertainty in the angle between the γ ray and the scattered projectile. In

the experiments discussed in this work, the uncertainty in θ is dominated by the finite

opening angles of the detectors.

3. ∆Eintr is the intrinsic energy resolution of the γ-ray detectors, given in Eq. 3.18. The

γ-ray detectors used for the measurements discussed in this work have intrinsic energy

resolutions of better than 7% for a 1 MeV γ ray emitted at rest with respect to the

detector [54]. The detector array discussed in this work was optimized so that the

contribution to the energy resolution from ∆β and ∆θ would match the contribution

from the intrinsic energy resolution for 1 MeV γ rays emitted from projectiles moving

at 0.3− 0.4 c.
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Figure 3.14: Photograph of CAESAR in front of the S800 spectrograph. The beam is incident
from the left side of the image. See Fig. 3.15 for a side view of the CAESAR setup.

67



3.4 CAESAR - Gamma-Ray Detection

Efficiency is critical for γ-ray spectroscopy experiments of the most exotic nuclei, where the

beam rates are on the order of a few particles per second. CAESAR (see Fig. 3.14) was

commissioned in 2009 to answer this need. CAESAR is composed of 192 CsI(Na) crystals,

weighing about 300 kg in total. It covers 95.5% of the solid angle around the target and is

about 40% efficient for a 1 MeV γ ray [54].

The design and commissioning criteria for CAESAR are discussed in [54]. The design

considerations were driven by the geometry of the experimental station where the detector

would be primarily used (at the target position of the S800 spectrograph), the goal of 10%

FWHM energy resolution from each detector for a 1 MeV γ ray emitted from a source moving

at 40% of the speed of light, and the need for high detection efficiency. This baseline led

to an array with 192 CsI(Na) crystals, 48 of which measure 3 × 3 inches on the front face

and are three inches deep. The remaining 144 detectors measure 2× 2 inches on their front

face and are four inches deep. The dimensions of the crystal faces match the diameter of

standard photomultiplier tubes.

As seen in Fig. 3.15, CAESAR is arranged in ten rings, labeled A (most upstream)

through J (most downstream). The geometry of CAESAR is such that some detectors

are partially shielded with respect to the target by others, especially at the corners. For

this reason it is not expected that all detectors will measure the same number of γ rays

isotropically emitted from a source placed in the center of the array.

The cross section for γ-ray interactions with the detector material increases with the

atomic number (Z) of the material from which the detector is made (see Sec. 3.3.1). This

being so, it is no surprise that materials optimized for γ-ray spectroscopy tend to be composed
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Figure 3.15: Schematic of the arrangement of the 2 × 2 × 4 inch and 3 × 3 × 3 inch
crystals in CAESAR. The figure on the left shows a cross-sectional view of the rings F and
J perpendicular to the beam axis. The figure on the right shows the ten rings of the array,
labeled A (most upstream) through J (most downstream), as well as the target position (in
red), and the position of the S800 Spectrograph. The gray scale of the crystals corresponds
to the position on the rings, as shown in the figure on the left. Figure from [54].

of high-Z elements. There are two main types of detectors used for γ-ray spectroscopy: semi-

conductor detectors and scintillation detectors. A common choice of scintillation material

is Thallium-doped Sodium Iodide (NaI(Tl)). The detectors used in this work were made of

Sodium-doped Caesium Iodide (CsI(Na)), because this material has a higher stopping power

for γ rays than does NaI(Tl) but provides nearly the same FWHM and response time (see

[54]).

3.4.1 CAESAR Detectors

The CAESAR detectors were produced by ScintiTech, they consist of CsI(Na) scintilla-

tor crystals encased in an aluminum housing. The encapsulation is necessary because the

CsI(Na) crystals are hygroscopic and as such will suffer damage if exposed to moisture.

There is a 1.5 mm thick layer of reflective material between the 1 mm thick aluminum wall
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Figure 3.16: Schematic of a photomultiplier tube with attached scintillation crystal. Com-
ponents are discussed in text. Figure after [66].

and the crystal. Each crystal is encapsulated on 5 sides, the 6th side is covered with a round

borosilicate window framed in aluminum so that it can be coupled to a photomultiplier tube.

A schematic of a photomultiplier tube (PMT) coupled to a scintillator is shown in

Fig. 3.16. A PMT converts light into an electronic signal whose current is proportional

to the energy of the γ-ray which caused the scintillation light. Photons produced as a result

of a γ-ray interaction with the scintillating detector material hit the photocathode of the

PMT and produce electrons via the photoelectric effect (Sec. 3.3.1.1), which are collected

by the focusing cathode and multiplied by the system of dynodes. A bias voltage is applied

across the PMT and each dynode is at a higher voltage than the previous one, such that the

electrons produced on one dynode will be accelerated to the next. The dynodes are made of

material that, when struck with an electron of sufficient energy, emits several more electrons

(see [58]). The electrons are collected on the anode, and a current signal proportional to

the number of photoelectrons emitted from the photocathode is read out. The compounds

composing the glass of the tube are chosen to have an index of refraction which matches
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the detector material and window, and the photocathode is deposited on the face of the

PMT with is coupled to the scintillator by optical grease. The photoelectric tubes used in

CAESAR were produced by Hamamatsu Photonics and are model numbers R1307 (with a

three inch diameter) and R1306 (with a two inch diameter). The PMTs were covered by an

aluminum shell which is screwed on to the crystal encapsulation.

CAESAR is typically operated near magnets and the fringe fields from these magnets

can be non-negligible and affect the operation of the array’s photomultiplier tubes. For

this reason several layers of µ-metal were placed between the PMT and the aluminum shell.

This shielding keeps the detector assemblies operational in magnetic fields of up to 2-3 mT.

Magnetic fields exceeding 0.5 mT were observed to impact the pulse height of the signals.

However, fringe fields from the S800 Spectrograph can exceed a magnetic field strength of 3

mT at and around the pivot point were CAESAR is located. Therefore, a large soft-iron steel

shield (67 × 67 inches wide and 0.25 inches thick) was installed between the spectrograph

and CAESAR as can be seen in Fig. 3.14.

3.4.2 Nearest-Neighbor Addback

In one of the mechanisms discussed in Sec. 3.3.1 for the interaction of γ rays with matter

(the photoelectric effect) the γ ray is absorbed, while in the other two mechanisms (pair

production and Compton scattering), the γ ray deposits part of its energy with each inter-

action. Compton scattering is a significant effect in the energy regimes used for this work.

The signatures of this effect (see Fig. 3.12) are apparent in nearly all of the experimental

γ ray spectra. If two neighboring detectors simultaneously register a γ-ray event, there are

three possible reasons:
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1. Two γ rays from the source triggered two neighboring detectors.

2. One (or both) of the γ-ray events was a random coincidence from background sources.

3. A γ ray deposited a fraction of its energy in one crystal and scattered into a neighboring

crystal.

If the γ ray count rate low, it is unlikely that two unrelated γ rays will interact in neighboring

crystals, thus ruling out option one. Option two can be ruled out as well, for much the same

reason: the count rate from room background is low. Option three is by far the most likely of

those listed above and will result in a loss of full-energy peak efficiency that can be recovered

by a technique called nearest-neighbor addback. The nearest-neighbor addback routine is

implemented in the CAESAR analysis code. The routine’s algorithm is as follows:

1. Identify events in neighboring detectors.

2. If such an event is found, add the energies from both detectors together, taking the de-

tector with the highest measured γ-ray energy as the first interaction point for Doppler

reconstruction. The first interaction point determines the emission angle of the γ ray

in the laboratory frame.

3. If necessary, perform a Doppler correction to this summed energy.

The nearest-neighbor addback routine increases the γ-ray detection efficiency signifi-

cantly. The full-energy-peak efficiency of CAESAR for a 1 MeV γ ray emitted at rest is

around 30%. The nearest-neighbor addback routine improves this efficiency by more than

20%. The improvement for a 2 MeV γ ray is more than 30% [54]. The threshold for γ-ray

detection is vitally important to the efficiency of addback: if the threshold for detection is
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set at a higher γ-ray energy than that of the scattered γ ray, it will not be detected and the

event will be lost.

An illustration of the effect of the addback routine is shown in Fig. 3.17. Since the

nearest neighbor addback routine adds two lower energy events into one higher energy event,

it has the effect of decreasing the number of counts in the Compton plateau (see Fig. 3.12)

and increasing the number of counts in the full-energy peak, which improves the peak-to-

background ratio.

3.4.3 CAESAR Detection Efficiency

In order to measure the cross section for a transition with a characteristic de-excitation γ-ray

energy (Eq. 2.18) it is necessary to measure the number of γ rays emitted in the reaction.

The number of γ rays detected (Nobs
γ ) is related to the number of γ rays emitted (Nγ) by

the detection efficiency (ϵ) of the detection system:

Nγ =
Nobs
γ

ϵ
(
Eγ
) (3.20)

The absolute efficiency for γ-ray detection is given by:

ϵ
(
Eγ
)
=

number of γ rays detected

number of γ rays emitted
(3.21)

This efficiency depends on the energy of the emitted γ ray in the laboratory frame. If the

source is moving, the detected γ-ray energy will correspond to the Doppler-shifted energy

(see Sec. 3.3.2). Due to the Lorentz boost, the solid angle coverage of a detector is different in

the rest frame of the projectile from the laboratory frame. In addition, the angle of emission
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Figure 3.18: Change in angular distribution for γ rays emitted isotopically in the projectile
frame (red solid line) from a source moving at v/c = 0.3912 and detected in the laboratory
frame (blue dashed line). This angular distribution plot is for γ rays emitted in the de-
excitation of 40Si.

for a γ ray in the projectile frame is related to the angle of detection (in the laboratory

frame) by [41]:

tan (θlab) =
sin(θcm)

γ (cos(θcm) + β)
(3.22)

where θlab(cm) are the angles of emission in the lab (projectile) frame. If the angular distri-

bution of γ rays in the projectile frame is isotropic, this leads to a forward-focusing in the lab

frame of γ rays emitted in the projectile frame (see Fig. 3.18). Thus the energy-dependent

efficiency should be different for γ rays emitted at the same energy in-flight and at rest. One

typically calculates the total efficiency by folding the detection efficiency with the angular
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distribution of emitted γ-rays (W (Ω)), this is discussed by Olliver et al in [75]):

ϵtot
(
Eγ ,Ω

)
=

∫
Ω dΩϵ

(
Eγ ,Ω

)
W (Ω)∫

Ω dΩW (Ω)
(3.23)

This approach works well for a spherically symmetric detector system. CAESAR is not

spherically symmetric, so in order to calculate in-beam efficiencies, a GEANT4 [68] simula-

tion was written by Baugher et al. [70], which takes into account the geometry of CAESAR,

the target position, the aluminum housing of the crystals, the small gap between adjacent

detectors, the aluminum beam pipe, the velocity of the source at emission, the thickness and

composition of the target, the lifetime of the state emitting the γ ray, and other experimen-

tal conditions. This simulation accurately reproduces measured spectra of standard γ ray

sources at rest.
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Figure 3.19: Measured absolute full-energy peak efficiency for CAESAR. Sources used are
standard γ-ray calibration sources: 22Na, 137Cs and 88Y. The dashed red line is the measured
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Chapter 4

Coulomb Excitation of 34−42Si

The intermediate-energy Coulomb excitation of 34−42Si was performed in order to determine

the strength of the electric quadrupole transition matrix element, the B
(
E2; 0+ → 2+1

)
value, for this isotopic chain. Each silicon isotope was produced as a secondary beam from

the fragmentation of a 48Ca primary beam on a thick 9Be target. The primary beam

was accelerated to 140 MeV/u in the Coupled Cyclotron Facility at NSCL [50]. After the

fragmentation of the primary beam, the silicon isotope of interest was selected by the A1900

fragment separator [51, 52] and directed onto a high-Z target located at the target position

of the S800 magnetic spectrograph [53]. Particles in the secondary beam which were excited

by the Coulomb field of the high-Z secondary target emitted de-excitation γ rays with

energies characteristic of the excited state. These γ rays were detected by the high-efficiency

scintillator array CAESAR [54] in coincidence with scattered particles tracked on an event-

by-event basis in the S800 magnetic spectrograph [53].

78



isotope target ρ (g/cm2) thickness (µm) NT

34−40Si 197Au 0.518(4) 268(2) 1.58(1) ×1021

42Si 209Bi 0.492(4) 502(4) 1.42(1) ×1021

Table 4.1: Areal densities, thicknesses, and areal number densities of the secondary targets
used in this work.

4.0.4 Experimental Details

Assuming that only the first state with spin-parity 2+ is excited, the experimental cross

section for intermediate-energy Coulomb excitation of an even-even nucleus is calculated as:

σ2+→0+ =
Nγ(2+→0+)

NBNT
, (4.1)

where Nγ(2+→0+) is the number of γ rays emitted in the decay of the first 2+ excited state,

NB is the number of nuclei of interest incident on the target and NT is the areal number

density of the target, given by:

NT =
NA · ρ
A

. (4.2)

Here, NA = 6.022×1023 mol−1 is Avogadro’s number, ρ is the areal density of the secondary

reaction target in g/cm2, and A is the atomic mass of the target nuclei in g/mol. Two

different targets were used in this work. The experiments measuring the cross sections for

the intermediate-energy Coulomb excitation of 34−40Si used a 0.518 g/cm2 (about 268 µm)

thick 197Au target and the experiment measuring the cross section for the intermediate-

energy Coulomb excitation of 42Si used a 0.492 g/cm2 (about 502 µm) thick 209Bi target.

The uncertainty in the thickness of the target was assumed to be 4 mg/cm2. The areal

number densities calculated following Eq. 4.2 for the two targets used in this work are given

in Tab. 4.1.
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The determination of the number of beam particles and of the number of de-excitation

γ rays emitted will be discussed in the following sections.

4.0.4.1 Particle Detection and Tracking

Particles were detected on an event-by-event basis in the focal plane of the S800 spectro-

graph (see Fig. 3.3). The focal plane detectors used in this work were CRDCs, which provide

tracking information for the particles (see Sec. 3.2.1.1), the ionization chamber, which mea-

sures the energy loss of particles passing through it (see Sec. 3.2.1.3) and the e1 scintillator,

which provides the time-of-flight signal for the particles.

4.0.4.2 S800 Mask Calibrations and Ionization Chamber Gain Matching

As discussed in Sec. 3.2.1.1, the CRDCs in the S800 focal plane measure the (x,y) positions

of projectiles. The CRDCs are one meter apart, so if both CRDCs have measured the

(x,y) position of a particle the scattering angle for this particle can be determined. The x

position of an event is known from a fit of the charge distribution induced on the segmented

cathode pads. The y position is calculated from the drift time of the electrons created in the

ionization of atoms in the gas mixture filling the CRDCs. The drift time is the measured

difference in time between the collection of the electrons on the anode wire in the CRDC

and time at which the e1 scintillator registered the event.

The drift time depends on the properties and composition of the fill gas and is observed

to shift over time (see Sec. 3.2.1.1). The drift time was calibrated periodically during the

experiments discussed in this work by inserting a mask with holes at certain positions in front

of each of the two CRDCs. The drift time calibration was obtained based on the position of

the holes in the mask and the measured positions in the CRDCs. The drift time calibration
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isotope C1 slope C2 slope PD1 (%) PD2 (%) elapsed time (hr)

34Si -0.0514 0.0506 1.8 2 17

36Si -0.0522 0.0544 3.5 3 9

38Si -0.0537 0.0530 2.6 2.5 10

40Si -0.0492 0.0485 1.7 2 38

42Si -0.0691 0.0645 4.2 5.4 134

Table 4.2: initial CRDC1 (C1) and CRDC2 (C2) drift time calibration values and the percent
difference in calibration value for CRDC1 (PD1) and CRDC2 (PD2) over the course of the
measurements as well as the number of hours secondary beam was incident on the CRDCs.

was calculated by applying a linear function to map the measured y positions to the known

y positions of the holes in the mask. A spectrum taken during a mask calibration is shown

in Fig. 3.6. The drift time calibration obtained from the mask calibration was adjusted on a

run-by-run basis (as discussed in Sec. 3.2.1.1). Figure 3.7 shows the effect of this correction.

The ionization chamber is divided into 16 segments and the energy loss measured in each

segment is recorded. The segments of the ionization chamber were gain-matched by a linear

function which arbitrarily aligned the energy loss measured in each segment with that of the

first segment. The total energy lost in the ionization chamber is the sum of the energy lost

in each of the segments.

4.0.4.3 Particle Identification

Particles were identified by measuring the time-of-flight difference event-by-event between

two thin plastic scintillators (see Sec. 3.2.1.4), one before (the object scintillator) and one

after the secondary target (the e1 scintillator, see Fig. 3.3). The time-of-flight measured

in this way for the 40Si secondary beam is shown in panel b of Fig. 4.1. This allowed

the separation of the reaction products by A/Z (assuming Q = Z). The energy loss was
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Figure 4.1: panel (a): energy loss measured in the S800 ionization chamber for the
intermediate-energy Coulomb excitation of 40Si. panel (b): time-of-flight difference mea-
sured between the scintillator in the object position of the S800 analysis line (before the
secondary target) and the e1 scintillator in the S800 focal plane (after the secondary target)
for the intermediate-energy Coulomb excitation of 40Si.
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isotope PT WT BTE (MeV/u) rate (pps) purity (%)

34Si 752 750 87 1.144×106 94

36Si 752 750 86 9.92×104 92

38Si 752 750 91 8400 91

40Si 752 750 90 ≃ 184 85

42Si 1269 450 84 ≃ 140 1.4

Table 4.3: The 9Be primary target thickness (PT), 27Al wedge thickness (WT), both in
mg/cm2, beam energies before the secondary target (BTE), rate of the isotope of interest
at the A1900 focal plane, and purities of the secondary beams used in the measurements
discussed in this work.

measured (also on an event-by-event basis) in the ionization chamber in the focal plane of

the S800 (shown for 40Si in panel a of Fig. 3.2.1.3), which allowed discrimination by atomic

number.

The correlation between energy loss and time-of-flight measured for the beam containing

40Si is shown in Fig. 4.2. The isotope of interest (40Si) can be clearly distinguished from

the other particles in the beam. The purity of the incoming beam was about 85% 40Si, the

major contaminant (43S) made up about 12% of the beam. Tab. 4.3 shows the rates and

purities at the A1900 focal plane for all of the secondary beams discussed in this work. If the

rate at the S800 target position was greater than the rate limitation imposed by the CRDCs

in the S800 focal plane (about 6000 particles per second (pps), see Sec. 3.2.1.1), the rate was

lowered to ≈ 6000 pps by attenuating the primary beam.

4.0.4.4 Scattering Angle Reconstruction

In order to ensure that the excitation of the projectile (or target) is a result of the electro-

magnetic field of the target (or projectile), the analysis is restricted to events with a smaller

scattering angle than a maximum scattering angle corresponding to the safe impact param-
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isotope EMT (MeV/u) θmax
lab (mrad) θmax

cm (degrees)

34Si 81 46 3.1

36Si 81 43 3.0

38Si 86 39 2.7

40Si 85 37 2.6

42Si 79 39 2.7

Table 4.4: Energies and scattering angles calculated at mid-target thickness for the
intermediate-energy Coulomb excitation of 34−42Si.

eter of touching spheres plus 2 fm (see Sec. 2.2.3). The scattering angle is reconstructed

from the (x,y) positions measured in the CRDCs and with the known optics properties of

the spectrograph according the method described in Sec. 3.2.1.1.

The scattering angle (θ) is calculated as:

sin(θ) =

√
sin2(ata) + sin2(bta) (4.3)

where ata is the angle in the dispersive direction reconstructed after the target and bta is the

angle in the non-dispersive direction reconstructed after the target. The correlation between

these two angles is shown in Fig. 4.3 for the intermediate-energy Coulomb excitation of 40Si.

The scattering angle calculated from the dispersive and non-dispersive angles for the

intermediate-energy Coulomb excitation of 40Si is shown in Fig. 4.4. The maximum safe

scattering angle was calculated from Eq. 2.20 and using the mid-target beam energy, which

was calculated using LISE++ [56]. The energy of the secondary beam before the target

deduced from the rigidity of the S800 analysis line before the target. Table 4.4 summarizes

the calculated values of the laboratory and center-of-mass frame maximum scattering angles

and of the beam energy calculated at mid-target for all of the isotopes studied in this work.
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Figure 4.3: Matrix showing the correlation between the dispersive and non-dispersive angles
as reconstructed at the target position. The matrix is gated on 40Si.
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marked by the black dashed line.
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isotope Objeff (%) CRDC 1eff (%) CRDC 2eff (%)

34Si 98(1) 98(1) 99(1)

36Si 100(1) 99(1) 99(1)

38Si 100(1) 99(1) 97(1)

40Si 99(1) 99(1) 98(1)

42Si 100(1) 100(1) 100(1)

Table 4.5: Efficiencies of the particle detection systems in the focal plane for the measure-
ments discussed in this work.

The nominal angular acceptance in the laboratory frame of the S800 spectrograph is 7◦

in the dispersive direction and 10◦ in the non-dispersive direction [55]. The safe angles used

in this work are well below the acceptance limit of the S800 spectrograph. The accuracy of

the reconstructed scattering angle event-by-event in the laboratory frame is assumed to be

2 mrad (0.12◦) [55].

4.0.4.5 Efficiency of the Focal Plane Detectors

The particle detectors used in this measurement are: CRDC 1, CRDC 2, the ionization

chamber, the object scintillator, and the e1 scintillator. The efficiency of each of these

detectors is calculated with respect to the ionization chamber, which is assumed to be 100%

efficient. The measured efficiencies of these detectors are given in Tab. 4.5. The uncertainty

quoted is statistical.

4.0.5 CAESAR Calibrations and Simulation Input

The signature of intermediate-energy Coulomb excitation is a de-excitation γ ray, emitted

either from an excited state of a projectile (in flight) or from an excited state in the target

(at rest). The γ rays emitted following the intermediate-Coulomb excitation of 34−42Si
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were detected in the CAESium Iodide ARray (CAESAR) [54], which was positioned around

the target position of the S800 Spectrograph. The properties of CAESAR are discussed in

Sec. 3.4.

The detectors were gain matched using the 1836 keV γ ray from an 88Y source. The

voltage was set at the beginning of each experiment to be such that the 1836 keV line was at

channel 500 in a raw energy spectrum. In order to perform the energy calibration for each

detector, γ-ray spectra were obtained from standard γ-ray calibration sources (88Y, 137Cs

and 22Na), covering a range of energies from about 500 keV to 2 MeV. The centroids of

the full-energy-peaks for each transition were obtained, and these positions fit to the known

value of the transition by a second order polynomial. The resulting energy calibration was

used to sort the data. In order to ensure that the effects of signal drift were minimized,

an energy calibration taken before the beginning of each Coulomb excitation setting was

used (i.e. source data was taken between each experimental setting of 34,36,38,40Si, and the

analysis of each setting was performed with an energy calibration made from the source data

taken before that setting). This was necessary because the change in the rigidity of the

S800 spectrograph causes the magnetic field in the vicinity of CAEASR to change, which

can cause shifts in the effective gain of the PMTs. As Fig. 4.6 shows, the calibrated energies

remained stable throughout the experiment.

In the first experiment (the Coulomb excitation of 34−40Si, the trigger was S800 singles

(downscaled by 50), or S800-CAESAR coincidences (not downscaled), or CAESAR singles

(downscaled by 60). The downscaled CAESAR singles trigger allows the measurement of

the 1460 keV γ ray in the room background from the decay of 40K as well as the background

from a ≃ 2.6 MeV γ ray from the decay of 208Tl.

The effect of this energy calibration is seen in Fig. 4.5. Both spectra show the result
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Figure 4.5: Top: un-calibrated energies plotted as a function of detector number (detector
A1 is 1, detector J10 is 192 - see Fig. 3.15 for ring ordering). The detectors were gain-
matched by adjusting the voltage so that the 1836 keV transition in 88Y corresponded to
channel 500. Bottom: a second-order polynomial fit using data points taken from 5 minutes
of measuring the decay of 88Y and 22Na. This calibration was used for the analysis of γ-rays
detected in coincidence with 34Si particles in the S800. Some detectors are shielded from
the room background by others (see Sec. 3.4) and because of this have a lower number of
room background counts. Both spectra are shown for the same 88Y data set.
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Figure 4.6: Elapsed time (x) vs. the energy of a representative detector (y) during the
Coulomb excitation of 34Si. The trigger is CAESAR singles downscaled by a factor 60, so
room background is shown. The intensity variations represent changes in the beam rate that
allow more background to be acquired. About 18 hours of data is shown in this plot, so it
is clear that the gain is stable over long time scales.

of measuring the decay of an 88Y source for ≈ 5 minutes, the spectrum on the left is

shown without calibration, while the spectrum on the right has a second-order polynomial

calibration applied. The results shown in these spectra are typical for the calibrations used

in the analysis of all the measurements discussed in this work.

4.0.5.1 Energy Resolution of CAESAR

In order to accurately simulate the response of CAESAR to γ rays it is necessary to parame-

terize the energy resolution of the detectors in CAESAR (discussed in Sec. 3.3.2.1) in a way

that can be reproduced in the GEANT4 simulation (which will be discussed subsequently).

The widths of several peaks in each ring of CAESAR were fit to provide input for the energy

resolution simulated for CAESAR by the GEANT4 simulation. The γ-ray energies used

were: 511 keV (from the decay of 22Na), 898 and 1836 keV (from the decay of 88Y) and 1460

keV (from the decay of 40K). The widths of the peaks were measured by fitting a Gaussian
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Ring α β
A 0.72 0.53
B 0.39 0.62
C 0.63 0.54
D 0.92 0.47
E 0.44 0.59
F 0.61 0.54
G 0.68 0.55
H 0.38 0.64
I 0.60 0.57
J 0.62 0.56

Table 4.6: Parameters for Eq. 4.4 describing the energy resolution in each ring of CAESAR.

distribution and extracting the width of the distribution. The extracted widths were fit as

a function of their energy. The fit function used was:

σ(E) = α · Eβ , (4.4)

where σ is related to the FWHM of the peak by FWHM = 2
√
2 ln(2)σ, and α, β are fit

parameters. The values obtained from the fits of the widths of the peaks in CAESAR and

subsequently used as inputs to the GEANT4 simulation are given in Tab. 4.6. A plot of σ

as a function of γ-ray energy is shown for ring A of CAESAR in Fig. 4.7.

4.0.5.2 Nearest Neighbor Addback and Threshold Effects

The nearest neighbor addback routine is discussed in [54] and in Sec. 3.4.2. The addback rou-

tine attributes γ-ray energies measured in coincidence in neighboring detectors to a Compton-

scattered γ ray (see Sec. 3.3.1 for a discussion of Compton scattering). The two measured

γ-ray energies are added together, with the detector with the highest energy deposition taken

as the first interaction point. If the energy threshold for γ-ray detection is higher than the

energy of the scattered γ ray it will not be detected, so it is necessary to include the energy
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excitation γ ray and the impact of the energy threshold settings on low-energy γ rays.

thresholds in the GEANT4 simulation in order to reproduce the effect of the threshold on

the addback routine.

The energy thresholds were experimentally determined to be at ≈ 270 keV by placing a

133Ba γ ray source in CAESAR. As Fig. 4.8 shows, the 356 keV γ ray from the decay of this

source and the low-energy threshold are clearly visible.

The energy thresholds of all of the rings in CAESAR were fit with a Gaussian distribution,

and the extracted full width at half maximum (FWHM) and mean value were used as

inputs for the GEANT4 simulation for CAESAR, which models the energy threshold with
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Ring Mean (keV) FWHM (keV)
A 254 99
B 255 94
C 259 96
D 268 101
E 265 80
F 312 126
G 259 133
H 273 142
I 261 125
J 235 158

Table 4.7: The mean and FWHM of the Gaussian distribution determined from data and
used to describe the energy thresholds of the rings of CAESAR.

a Gaussian shape. The result of this fit to ring D in CAESAR is shown in Fig. 4.9; the

mean value and FHWM of the Gaussian distribution for the rings in CAESAR are given in

Tab. 4.7.

4.0.5.3 Efficiency of CAESAR

The absolute full-energy peak efficiency of CAESAR was determined by measuring the decay

of the calibrated γ-ray sources, 22Na, 137Cs and 88Y, which provide γ rays with energies

between 511 keV and 1836 keV. The peak areas of the γ-ray transitions were determined

by extrapolating a linear background to the spectrum beneath the peak and extracting the

number of counts above this background. The absolute full-energy peak efficiency calibration

for CAESAR obtained by this method is shown in Fig. 4.10. The results are agree with

those shown by Weisshaar et al. [54], who used the same method to determined the absolute

full-energy peak efficiency. The GEANT4 simulation successfully reproduces the measured

efficiency, as Fig. 4.10 shows.

The in-beam efficiency of CAESAR is calculated with a GEANT4 simulation, which will

be discussed subsequently. The absolute disagreement between the GEANT4 simulation and
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Figure 4.9: A Gaussian distribution (blue line) fit to the low-energy threshold of ring D.

96



200 400 600 800 1000 1200 1400 1600 1800 2000
15

20

25

30

35

40

45

50

Energy [keV]

F
u

ll
-e

n
e

rg
y

-p
e

a
k 

e
!

ci
e

n
cy

 [
%

]

measured singles

simulated singles

measured addback

simulated addback
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the measured efficiency is (at a maximum) 1%, so this is the adopted value for the absolute

uncertainty of the efficiency (∆ϵGEANT ) of the GEANT4 simulation. It is also necessary to

include the uncertainty in the initial activity of the calibration sources, which was 3% for all

the sources used in this work.

4.0.5.4 Doppler Reconstruction

Gamma rays with energy Eγ emitted from a projectile moving with a velocity v are Doppler-

shifted to a different energy (Elab
γ ) in the laboratory frame depending on their detection angle

(θlab):

Elab
γ

(
Eγ , θlab

)
=

Eγ

γ (1− β cos (θlab))
, (4.5)

where β = v/c and γ = 1/
√

1− β2. Doppler reconstructions were performed in order to

determine the energy with which the γ rays detected in the experiments were emitted from

the projectile.

The velocity of the projectile used for the Doppler reconstruction was selected depending

on the approximated lifetime of the first 2+ excited state in the projectile and the velocity

of the projectile before the target. The velocity of the projectile before the target was

determined from energy of the beam before the target (given in Tab. 4.3). The lifetimes of

the first 2+ excited states in 34−38Si can be estimated from their known B(E2; 0+ → 2+)

values [17] (see Sec. 2.2.1). The B(E2) values of 40,42Si were not known, so the lifetime was

estimated from predicted values, which will be discussed subsequently.

The target used for the intermediate-energy Coulomb excitation of 34−40Si was made of

268 µm thick 197Au, while the target used for the intermediate-energy Coulomb excitation of

42Si was made of 502 µm thick 209Bi. In all but one case (the intermediate-energy Coulomb
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isotope τ (ps) d (mm) βγ (v/c)

34Si 0.15(7)∗ 0.02 0.39

36Si 4.5(17)∗ 0.6 0.38

38Si 17(8)∗ 2.2 0.39

40Si 6⋆ 0.8 0.39

42Si 14⋆ 1.7 0.37

Table 4.8: Estimated lifetimes of 2+ excited states of 34−42Si, distance traveled before γ
emission and velocity at γ-ray emission. The target for the intermediate-energy Coulomb
excitation of 34−40Si was ≈ 0.268 mm thick 197Au, for the intermediate-energy Coulomb
excitation of 42Si the target was ≈ 0.5 mm thick 209Bi. Lifetimes for 34−38Si (marked with
∗) are from ENSDF [14], lifetimes for 40,42Si (marked with ⋆) are predicted values [11].

excitation of 34Si), the lifetime of the first 2+ excited state was longer than the time required

for the projectile to pass through the target. For these projectiles, the velocities at which

the γ rays were emitted was taken to match the rigidity of the S800 spectrograph after the

target, which was optimized for the transmission of the particle of interest to the focal plane

of the S800.

As the lifetime of the first 2+ excited state in 34Si is short, 0.15(7) ps, the velocity of

the projectile at emission was taken to be the velocity at mid-target. The lifetimes of the

excited states, distances traveled after excitation, and velocities at γ ray emission for all the

projectiles discussed in this work are shown in Tab. 4.8.

4.0.5.5 GEANT4 Simulation

A GEANT4 simulation for CAESAR was written by Baugher et al. [70] and models the

effects discussed in the previous sections: the energy thresholds and measured energy reso-

lution of CAESAR, the energy of the emitted γ ray, the lifetime of the state emitting the γ

ray and the incoming velocity of the projectile. The simulation is sufficiently sophisticated
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to model the energy loss of the projectile as it passes through the target, the absorbtion of

γ rays in the target, the Lorentz boost, the Doppler shift, and the angular distribution of

the emitted γ rays. The simulation includes aspects of the experimental setup, including the

beam pipe and the aluminum housing of the detectors.

As shown in Fig. 4.11, the simulation successfully reproduces measured source data,

analyzed without (panels a-c) and with (panels 1-3) the nearest neighbor addback routine,

which improves the efficiency of CAESAR, as discussed in Sec. 3.4.2. The simulation also

agrees with the measured efficiency, as shown in Fig. 4.10. Since the simulation accurately

reproduces the measured data, it can be used to extract the number of γ rays emitted from

a projectile in flight, as shown in the next section.

4.0.6 Extraction of Gamma-ray Yields

The number of de-excitation γ-rays produced in the intermediate-energy Coulomb excitation

of 34−42Si were extracted by fitting the results of GEANT4 simulations of emitted γ rays to

the measured data.

4.0.6.1 Background Reduction

A coincidence window between the S800 Spectrograph and CAESAR is opened each time a

particle is detected in the e1 scintillator in the S800 focal plane. As Glasmacher points out

[38], in intermediate-energy Coulomb excitation measurements, most of the particles which

enter the focal plane will not have been excited by the target. These particles will open a

coincidence window without having emitted a γ ray. The coincidence window is about 300

ns wide and CAESAR counts background at a rate of about 4 kHz, so the number of random
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Figure 4.11: Comparison of measured and simulated γ-ray transitions from standard cali-
bration sources. Panels a-c (left) show the measured (black) and simulated (blue) transitions
for the decay of (from a) 60Co, 88Y and 137Cs analyzed without addback. Panels 1-3 (right)
show the measured (black) and simulated (red) transitions for the decay of the same three
sources, but analyzed with addback.
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coincidences can be similar to the number of excited scattered particles in the focal plane1.

Following the technique described by Weisshaar et al. [54], the number of random

coincidences are reduced by the application of a two-dimensional time-energy gate condition

to the γ-ray spectra (shown in Fig. 4.12 for the intermediate-energy Coulomb excitation

of 38Si). The detector timing is measured with respect to a thin plastic scintillator at the

object position of the S800 spectrograph (see Fig. 3.3), so events measured in CAESAR are

correlated in time with particles detected in the S800 focal plane. The two-dimensional time-

energy gate condition can remove many of the random coincidences from room background

from the γ ray spectra, without impacting the coincidences with prompt γ rays.

A comparison of the γ-ray spectra, without a Doppler-correction applied, from intermediate-

1For example, in the case of 38Si, the cross section to the first 2+ excited state is σ ≈ 48 mb
and the target was 518 mg/cm2 thick 197Au, so approximately 1 excited 38Si nucleus is expected
for every 13,000 38Si incident on the target.
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energy Coulomb excitation of 34−40Si with and without the time-energy gate applied is shown

in Fig. 4.13. The time-energy gate reduces the number of off-prompt γ rays in the γ-ray

spectra without impacting the peak area of the prompt transitions. The time-energy gate

condition almost entirely removes the room background peak at 1460 keV from the γ-ray

spectra, without changing the peak area from the prompt de-excitation of the excited state

at 547 keV produced by the intermediate-energy Coulomb excitation of the 197Au target by

the projectile. The same comparison for same cases, but with a Doppler-correction applied,

is shown in Fig. 4.14. Again, the two-dimensional time-energy gate removes the random

coincidences with room background without impacting the coincidences with prompt γ rays.

The γ-ray background can be further reduced by offsetting the time-energy gate in time,

so that it samples the room background, and subtracting the resulting background spectra

from the spectra measured with the prompt two-dimensional time-energy gate. The choice

made for this gate condition did not have an impact on the number of coincidences in the

full-energy peak.

The results of such a background subtraction are shown for spectra analyzed without a

Doppler correction applied in Fig. 4.15. As this figure shows, the background subtraction

removes the remaining background peak at 1460 keV without impacting the peak areas

corresponding to the prompt transitions. The results of such a background subtraction are

shown for spectra analyzed with a Doppler correction applied in Fig. 4.16.

The intermediate-energy Coulomb excitation of 42Si was performed with a 492 mg/cm2

thick 209Bi target. The ground state of 209Bi has a spin and parity of Jπ = 9/2− and the

first excited state in 209Bi, at 896.28(6) keV, has spin and and parity of Jπ = 7/2− [71].

The adopted B(E2; 9/2− → 7/2−) value for the transition between the ground state and

the first excited state is 27.5(14) e2 fm4 [71], so the expected intermediate-energy Coulomb
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Figure 4.13: Measured γ-ray spectra from the intermediate-energy Coulomb excitation of
34−40Si, analyzed with the nearest neighbor addback routine and without a Doppler cor-
rection applied. The spectra in red were analyzed without the time-energy gate condition
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applied. The spectra in red were analyzed without the time-energy gate condition applied,
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excitation cross section is less than 1 mb for this case. Since this cross section is two orders of

magnitude smaller than the expected intermediate-energy Coulomb excitation cross section

for 42Si, the number of de-excitation γ rays emitted from the excited state in the target are

not expected to significantly contribute to the measured γ-ray spectrum.

The 209Bi target was chosen in order to ensure that no γ rays emitted at rest from the

target would be shifted to the expected energy of the de-excitation γ ray from the projectile

(measured to be 770(19) keV by Bastin et al. [21]) by the application of the Doppler

correction. Gamma-ray spectra measured during this experiment, analyzed with a Doppler

correction applied and with and without the two-dimensional time-energy gate applied are

shown in Fig. 4.17. The expected transition at ≃ 770 keV [21] is clearly visible.

4.0.6.2 Fit of the Experimental Spectra with the GEANT4 Simulation

In order to determine the cross section for the intermediate-energy Coulomb excitation of

a nucleus, the number of de-excitation γ rays emitted by the state excited in this reaction

must be determined.

The γ-ray spectra measured in-beam have characteristic features. The spectra analyzed

without the application of a Doppler correction (c.f. Fig. 4.15) show evidence of the de-

excitation of the 7/2+ excited state in the 197Au target; a peak at 547 keV. This peak from

the de-excitation of a target nucleus is convoluted with a peak at 511 keV, which is attributed

to pair production and subsequent positron annihilation in CAESAR. The spectra analyzed

with the application of a Doppler correction (c.f. Fig. 4.16) have a peak at the expected

energy of the de-excitation γ ray emitted from the first 2+ excited state in the projectile.

The γ ray spectra produced by γ rays emitted in the de-excitation of excited states in the

target or projectile, as well as the γ ray spectrum of the 511 keV γ ray, are simulated by the
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GEANT simulation. Although the 511 keV γ rays are likely created by pair production and

positron annihilation events in the CsI(Na) crystals composing CAESAR, they are modeled

by the GEANT simulation as being single γ rays isotropically emitted from the position of

the target, since they are only used to describe the shape of the spectra.

All the γ-ray spectra measured in beam shown in this work have in common a prompt

background, attributed mainly to atomic processes [65]. This prompt background is de-

scribed here by the sum of two exponential functions. This is a common approach to describe

the prompt background, see [72, 73, 74].

Gamma-ray spectra produced by the GEANT4 simulation, as well as the double ex-

ponential function describing the prompt background, were fit to the measured prompt,

background-subtracted γ-ray spectra discussed in the previous section.

In order to determine the number of γ rays emitted from the excitation of the 197Au

target by the projectiles, it was first necessary to disentangle the contribution to γ-ray

spectra of the 547 keV γ ray and the of 511 keV γ ray. This was done by applying two gate

conditions to the γ-ray spectra. The first gate condition (which this work will call the “hit

1 condition”) was satisfied by events in which only one detector in CAESAR registered an

event which met the two-dimensional energy-time gate condition discussed in the previous

section. The second gate condition (which this work will call the “not hit 1 condition”)

was satisfied by events in which more than one detector registered events meeting the two-

dimensional energy-time gate condition. These spectra were analyzed with the addback

procedure applied. The efficiency of CAESAR at the energy of interest is similar for singles

and addback, as Fig. 4.10 shows, so this choice is justified.

The spectra analyzed with these gate conditions applied for the intermediate-energy

Coulomb excitation of 36Si are shown in Fig. 4.18. As this Fig. shows, most of the events
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111



corresponding to the detection of 547 keV γ rays satisfied the “hit 1 condition”, with a small

number of these events satisfying the “not hit 1 condition”, while virtually none of the events

corresponding to the detection of a 511 keV γ ray satisfied the “hit one condition”. This is

expected, as the 511 keV γ rays are a result of processes in which more than one γ ray is

emitted and the efficiency of CAESAR for detecting 511 keV γ rays is high (as demonstrated

in Fig. 4.10).

The function used to fit the spectra analyzed with the “hit 1 condition” applied was

the sum of the double exponential function used to describe the prompt background, the

simulated full-energy spectrum of the 547 keV γ rays and the simulated full-energy spectrum

of the Doppler-shifted γ rays emitted from the projectile:

f(x) = p1 · e−p0·x + p3 · e−p2·x + p4 · SAu(x) + p5 · SSi(x) . (4.6)

Where pi are the fit parameters, the 547 keV γ ray was simulated as being emitted at rest

(SAu), and the γ ray resulting from the de-excitation of the first 2+ state in the projectile

(SSi) was simulated as being emitted in flight. The spectra of the 511 and 547 keV γ rays are

nearly identical after Doppler-reconstruction and are only used to describe the background.

The resulting fit is shown for the intermediate-energy Coulomb excitation of 36Si in the upper

panel of 4.19. The simulations of the full-energy spectra of the of the γ rays emitted at rest

and in flight included both the energy-dependent energy resolution calibration discussed in

Sec. 3.2.1.4 and the effects of the energy thresholds discussed in Sec. 4.0.5.2.

The function used to fit the spectra analyzed with the “not hit 1 condition” applied was

the sum of the double exponential function used to describe the prompt background, the

simulated full-energy spectrum of the 511 keV γ rays, the simulated full-energy spectrum
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of the 547 keV γ rays and the simulated full-energy spectrum of the Doppler-shifted γ rays

emitted from the projectile:

f(x) = p1e
−p0·x + p3e

−p2·x + p4 · S511(x) + p5 · SAu(x) + p6 · SSi(x) . (4.7)

Where the 547 keV and 511 γ rays were simulated as being emitted at rest (SAu, S511)

and the γ ray resulting from the de-excitation of the first 2+ state in the projectile was

simulated as being emitted in flight (SSi). The resulting fit is shown for the intermediate-

energy Coulomb excitation of 36Si in the lower panel of 4.19. The total number of 547 keV

γ rays emitted from the target is determined from the sum of the number of 547 keV γ rays

in the spectra analyzed with the “hit 1” and “not hit 1” conditions applied.

The function used to fit the Doppler-corrected spectra from the intermediate-energy

Coulomb excitation of 34−40Si was the sum of the double exponential function describing

the prompt background, the simulated Doppler-corrected full energy spectra of the 511 and

547 keV γ rays, and the simulated Doppler-corrected spectrum of the γ rays emitted from

the projectile:

f(x) = p1 · e−p0·x + p3 · e−p2·x + p4 · (S511(x) + SAu(x)) + p5 · SSi(x) . (4.8)

Where pi are fit parameters and S511, Au(x) are the simulated 511 keV and 547 keV γ-ray

spectra. These γ rays were simulated to be emitted at rest and Doppler-corrected with the

velocity of the projectile. These two γ rays are separated in energy by 36 keV and their

Doppler-corrected energy spectra are nearly identical. The function used to fit the measured

spectra included their contribution as the sum of the two simulated spectra. SSi(x) is the
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Figure 4.19: Measured prompt, background-subtracted γ-ray spectra, analyzed without the
application of a Doppler correction and with the addback procedure, from the intermediate-
energy Coulomb excitation of 36Si and the fit of γ ray spectra produced GEANT4 simulation
to these data. Top: the result of analysis with the “hit 1 condition” applied (labeled “hc1”)
and the fit function (equation 4.6) discussed in the text applied. Bottom: the result of
analysis with the “not hit 1 condition” applied (labeled “not hc1”) and the fit function
(equation 4.7) discussed in the text applied.
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simulated γ-ray spectrum resulting from the de-excitation of the the first 2+ excited state

in the projectile. These γ rays were simulated to be emitted at the velocity of the projectile

were Doppler-corrected to the energy of emission in the projectile frame.

The fit region was chosen to include the Doppler-corrected peak emitted by the projectile

and the Doppler-shifted γ rays emitted from the target. The fit function included the

contribution of the 547 keV γ ray from the 197Au target and 511 keV γ rays (both emitted at

rest with respect to CAESAR) from pair-production and positron annihilation (see Sec. 3.3.1)

as the sum of their simulated Doppler-shifted energies.

The results of these fits for the γ-ray spectra measured in the intermediate-energy

Coulomb excitation of 34−40Si are shown in Fig. 4.20.

The function used to fit the prompt, Doppler-corrected spectrum from the intermediate-

energy Coulomb excitation of 42Si was the sum of the double exponential function describing

the prompt background and the simulated Doppler-corrected full-energy spectrum of the γ

rays emitted from 42Si in flight:

f(x) = p1 · e−p0·x + p3 · e−p2·x + p4 · SSi(x) . (4.9)

at the level of statistics present in the γ ray spectra measured in the intermediate-energy

Coulomb excitation of 42Si, the contribution to the spectra from 511 keV γ rays produced in

pair-production or positron annihilation in the detectors in CAESAR is negligible, so there

was no need to include any simulated γ rays besides the de-excitation γ ray from the first

2+ excited state in 42Si (SSi) in the fit function. The result of the fit to the data is shown

in Fig. 4.21.

The number of γ rays emitted is extracted from the fit functions by multiplying the num-
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Figure 4.20: Measured prompt, background-subtracted, Doppler-corrected γ-ray spectra
from the intermediate-energy Coulomb excitation of 34−40Si and the fit of the GEANT4
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target by the projectile) and from the 511 keV γ ray produced in pair production or position
annihilation and emitted at rest (in green).
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Figure 4.21: Measured prompt γ-ray spectra analyzed with the application of a Doppler
correction and the addback procedure from the intermediate-energy Coulomb excitation of
42Si and the fit of the function discussed in the text (blue line - Eq. 4.9) to these data. The
simulated spectrum shown is from the de-excitation γ ray emitted by the first 2+ excited
state in 42Si (in violet).
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ber of γ rays simulated by the GEANT4 simulation (which was fixed at 100,000 events for

all the simulated full-energy spectra used to fit the cases discussed in this section) by the fit

function parameter corresponding to the full-energy spectrum of the the γ ray. The uncer-

tainty of this quantity is given by the uncertainty of the fit parameter (pi), the uncertainty

in the efficiency of the GEANT4 simulation (which was δGEANT = ∆ϵGEANT /ϵGEANT ,

with ∆ϵGEANT = 1% as discussed in Sec. 4.0.5.3), and the uncertainty in the accuracy of

the calibration of the source used to measure the efficiency of CAESAR (δsource = 3%):

δNγ = Nγ

√
δ2source + δ2GEANT +

(
δpi
pi

)2

(4.10)

The number of γ rays detected for the de-excitation of the 197Au target together with their

associated uncertainty, are given in Tab. 4.9. The final number of γ-rays given in Tab. 4.9

includes a 5.9(4)% correction to account for the decay of the excited state to states other

than the ground state [76]. The number of γ rays detected for the de-excitation of the

excited states in the silicon nuclei of interest are given in Tab. 4.10. As the efficiency of

detection is accurately reproduced by the GEANT4 simulation, the numbers given in the

table are the number of γ rays emitted from the projectile or target absent a correction for

the livetime of the data acquisition, which will be discussed in the next section. The γ-ray

spectra from which these numbers were extracted were analyzed with the gate condition of

the safe scattering angle for intermediate energy Coulomb excitation.
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isotope pAu δGEANT Nγ

34Si 0.11794(278) 0.024 12490(566)

36Si 0.06573(202) 0.024 6902(341)

38Si 0.06083(194) 0.024 6442(323)

40Si 0.00735(77) 0.024 772(86)

Table 4.9: The number of γ rays corresponding to the de-excitation of the excited state in
the 197Au target, extracted following the procedure outlined in the text from the measured
spectra analyzed subject to the condition of scattering θ ≤ θmax, where θmax is the safe
angle for intermediate-energy Coulomb excitation.

isotope pSi δGEANT Nγ

34Si 0.08807(277) 0.108 8807(1028)

36Si 0.11132(250) 0.037 11132(588)

38Si 0.12086(246) 0.030 12086(571)

40Si 0.01724(88) 0.030 1724(115)

42Si 0.00057(14) 0.026 57(14)

Table 4.10: The number of γ rays corresponding to the de-excitation of the excited state
in the projectile, extracted following the procedure outlined in the text from the measured
spectra analyzed subject to the condition of scattering θ ≤ θmax, where θmax is the safe
angle for intermediate-energy Coulomb excitation.

119



4.1 Intermediate-Energy Coulomb Excitation Cross Sec-

tions

The excitation cross sections for intermediate-energy Coulomb excitation are used to deduce

the B(E2 ↑) transition strength between the ground state, with spin and parity Jπ = 0+ and

the first excited state with spin-parity 2+ in the projectile. If the the 197Au target was used,

the cross section for the excitation from the 3/2+ ground state to 7/2+ excited state the was

used to extract the B(E2 ↑) transition strength. The deduced B(E2 ↑) transition strengths

from 197Au were then compared to the adopted value in order to check the accuracy of the

measurement.

The experimental cross section, as given in Eq. 4.1, is determined by the measuring the

number of γ rays emitted in the reaction of interest, the number of projectiles which can

cause the reaction and the density of the target.

4.1.1 The Live-time of the S800 Particle-Singles and the Gamma-

Particle Coincidence Triggers

The experimental cross section measured in intermediate-energy Coulomb excitation is given

by:

σ2+→0+ =
Nγ

NBNT
(4.11)

where Nγ is the number of γ rays emitted, NB is the number of projectiles incident on the

target, and NT is the density of the target (given in Eq. 4.2).
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The number of projectiles is given by:

NB =
NSi ·DSS800

LTS800
(4.12)

here, NSi is the number of silicon isotopes of interest detected in the S800 focal plane,

DSS800 is the downscaling factor (discussed in 3.2.1.4) applied to the S800 singles trigger

and LTS800 is the livetime of the data acquisition for the S800 singles trigger.

A livetime correction is applied to the measured number of events corresponding to a

trigger condition to correct for the amount of time the data acquisition system is busy

and cannot record events. This correction is calculated by dividing the number of events

the data acquisition system recorded by the total number of events meeting the trigger

condition recorded by a scaler module, which is not affected if the data acquisition system

is busy. The number of triggers recorded by the data acquisition are put into a “trigbit

spectrum” in a bin location depending on the trigger. The counts in 0th bin of the spectrum

corresponded to the number of S800 singles triggers recorded by the data acquisition and

the 1st bin corresponded to the number of particle-γ coincidence triggers recorded by the

data acquisition. The calculation of the livetime of the S800 singles trigger is given below:

LTs800 =
NTB0

Ns800.trigger
, (4.13)

where NTB0 is the number of counts in the 0th bin in the trigbit spectrum and Ns800.trigger

is the number of counts recorded by the scaler module for events meeting the s800 singles

trigger condition. The uncertainty of this quantity is statistical.

121



isotope NTB0 δNTB0 DSS800 LTS800 (%) LTCoinc (%)

34Si 5,497,850 2345 50 83(1) 72(1)

36Si 3,080,700 1755 50 90(1) 79(1)

38Si 2,864,400 1692 50 92(1) 82(1)

40Si 4,318,700 2780 4 95(1) 90(1)

42Si 360,200 600 1 100(1) 100(2)

Table 4.11: Number of particles, downscaling factors and livetimes of the S800 singles trigger
and of the particle-γ coincidence trigger for the intermediate-energy Coulomb excitation
experiments discussed in this work.

The livetime of the coincidence trigger is calculated in much the same way:

LTcoinc =
NTB1

Ncoinc.trigger
. (4.14)

Here, NTB1 is the number of counts in bin 1 of the trigbit spectrum and Ncoinc.trigger is the

number of counts recorded by the scaler module for events meeting the particle-γ coincidence

trigger condition. The uncertainty of the quantity is also statistical.

The number of particles of interest detected in the S800 focal plane (NSi in Eq. 4.12)

were obtained by gating the trigbit spectrum on the particle of interest in the particle

identification matrix (see Fig. 4.2) and taking the resulting number of counts in the 0th bin

of the spectrum. The uncertainty on this number is also statistical. The downscaling factors

and livetimes of the S800 singles trigger and particle-γ coincidence trigger, together with the

associated uncertainties, for the measurements discussed in this work are given in Tab. 4.11.

The number of γ rays emitted (Nγ in Eq. 4.1) in the de-excitation of an excited state
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produced in an inelastic reaction between the projectile and target is:

Nγ =
Nobs
γ

ϵ(Egamma) · LTCoinc
. (4.15)

Here, Nobs
γ is the number of γ rays detected, ϵ the efficiency of the detector, and LTCoinc is

the livetime of the data acquisition for the particle-γ coincidence trigger. The livetimes of the

coincidence trigger for the intermediate-energy Coulomb excitation experiments discussed in

this work are given in Tab. 4.11. As discussed in the previous section, the number γ rays

emitted by the de-excitation of the excited states produced due to the inelastic reaction

between the projectile and the target is extracted by fitting the measured γ ray spectra

with a function describing the prompt background and the simulated full-energy spectra of

the γ rays of emitted. The number of γ rays emitted is then the number simulated (which

was constant, at Nsim
γ = 100, 000 events), for each of the full-energy spectra simulated

multiplied by the fit parameter (pi). The number extracted from this procedure is the

efficiency-corrected number of γ rays emitted:

Nsim
γ = pi ·Nsim

evts . (4.16)

The total number of γ rays emitted is obtained by dividing Nsim
γ by the livetime of the

particle-γ coincidence trigger:

Nγ =
Nsim
γ

LTcoinc
. (4.17)

Therefore, the experimental cross section for intermediate-energy Coulomb excitation is given

by (see Eq. 4.1):

σ2+→0+ =
Nsim
γ

LTcoinc
· LTS800
NTB ·DSS800

· 1

NT
. (4.18)
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isotope σSi
2+→0+

(mb) σAu
2+→0+

θlab ≤ θmax
lab (mrad)

34Si 23(3) 33(2) 46(2)

36Si 52(3) 32(2) 43(2)

38Si 60(3) 32(2) 39(2)

40Si 66(4) 30(3) 37(2)

42Si 112(28) 39(2)

Table 4.12: Measured cross sections obtained following the procedure discussed in the text
for the intermediate-energy Coulomb excitation of 34−42Si.

The measured cross sections for the intermediate-energy Coulomb excitation of 34−42Si were

extracted from of γ ray spectra analyzed subject to the condition of the safe scattering angle,

following the procedure discussed in the next section.

4.1.2 Scattering Angle Cuts

As discussed in Sec. 2.2.3, in order to exclude nuclear contributions to the excitation process,

the analysis is restricted to events at small scattering angles corresponding to impact param-

eters 2 fm larger than the sum of the radii of the projectile and the target. To accomplish

this, the γ ray spectra measured in the intermediate-energy Coulomb excitation experiments

discussed in this work were analyzed subject to gate conditions of several different scattering

angle ranges. The accuracy of the reconstructed scattering angle in laboratory frame is as-

sumed to be 2 mrad (0.12◦) [55]. The uncertainty in the reconstruction was included in the

deduction of the B(E2 ↑) values by assigning an uncertainty to the angle-integrated cross

section for intermediate-energy Coulomb excitation calculated following the theory of Alder

and Winther (see Sec. 2.30 and [40]) corresponding to the values of the angle-integrated cross

section at calculated with θmax
lab ± 2 mrad in the laboratory frame.

The number of γ rays emitted by events scattering with an angle θ ≤ θmax was extracted
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by fitting the γ ray spectra analyzed subject to the gate conditions of the scattering angle

cuts (in addition to the gate conditions previously discussed). The γ-ray yield was extracted

following the procedure outlined in Sec. 4.0.6. A representative sampling of the γ-ray spectra

analyzed with a Doppler correction applied and subject to the gate conditions discussed in

this section and in the previous sections is shown in Fig. 4.22 for the intermediate-energy

Coulomb excitation of 34−40Si and in Fig. 4.23 for the intermediate-energy Coulomb excita-

tion of 42Si.

4.1.3 Measured Cross Sections and Extracted B(E2) Values

The number of particles incident on the target and the number of de-excitation γ rays emitted

from excited states in the projectiles or from an excited state in the 197Au target were

determined following the procedure discussed in the previous sections. The experimental

cross sections (equation 4.18) determined for the intermediate-energy Coulomb excitation

of the 197Au target by the projectiles are shown as a function of the scattering angle in

Fig. 4.24, while the cross sections determined for the intermediate-energy Coulomb excitation

of 34−42Si are shown in Fig. 4.25.

4.2 B(E2) Values

The B(E2 ↑) excitation strengths were extracted by comparing the theoretical cross section

for intermediate-energy Coulomb excitation (discussed in Sec. 2.2.3 and given in Eq. 2.30)

to the measured cross section given in Eq. 4.18 and discussed in this chapter. The cross

sections extracted in this work for the intermediate-energy Coulomb excitation of 197Au are

shown in Fig. 4.26. The deduced B(E2 ↑) excitation strength for the transition between the
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Figure 4.22: Background subtracted γ ray spectra measured in the intermediate-energy
Coulomb excitation of 34−40Si, analyzed with a Doppler correction applied and subject to
the two-dimensional time-energy gate condition. The red spectra are analyzed without a
scattering angle gate condition, the blue spectra are analyzed subject to the gate condition
that the coincident particles have scattering angles between 0 and the safe angle in the
laboratory frame. This gate condition reduces the number of measured 2+ → 0+ γ rays
by ≈ 32% for 34−40Si, but ensures that there are no nuclear contributions to the excitation
cross section.
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Figure 4.24: Angle-integrated cross sections determined for the intermediate-energy Coulomb
excitation of 197Au plotted versus the laboratory scattering angle. The relative uncertainty
decreases as a function of the scattering angle due to the increase in statistics.
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Figure 4.25: Angle-integrated cross sections determined for the intermediate-energy Coulomb
excitation of 34−42Si plotted versus the laboratory scattering angle. The relative uncertainty
decreases as a function of the scattering angle due to the increase in statistics.
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isotope 197Au B(E2 ↑) value (e2 fm4)

34Si 4150+398
−386

36Si 4102+423
−411

38Si 4129+463
−447

40Si 3899+611
−599

Adopted 4494(409)

Table 4.13: B(E2 ↑) = B(E2; 3/2+ → 7/2+) values (in units of e2 fm4) deduced in this
work for the 197Au target used in the intermediate-energy Coulomb excitation of 34−42Si.

3/2+ ground state and the 7/2+ excited state in 197Au for all of these measurements agrees

with the adopted value of B(E2 ↑) = 4494(409) e2fm4 [76], as shown in Tab. 4.13. The

B(E2 ↑) excitation strengths deduced following this method are shown as a function of the

laboratory scattering angle for 34−42Si in Fig. 4.27.

The B(E2; 0+ → 2+1 ) transition strength is a property of the structure of the nucleus

and cannot depend on the reaction kinematics. However, as seen for 197Au in Fig. 4.26 and

for 34−40Si in Fig. 4.27, there is a correlation between the B(E2 ↑) value and the scattering

angle, possibly due to angle-acceptance losses or beam emittance issues. Nevertheless, the

kinematics for the intermediate-energy of the projectile by the target or of the target by

the projectile are the same, so this correlation can be removed by normalizing the deduced

B(E2 ↑) value for 197Au on the adopted value:

S =
B(E2 ↑)Au

exp

B(E2 ↑)Au
adopted

. (4.19)

The deduced B(E2) value for the silicon isotopes can then be scaled by S:

B(E2; ↑)Siexp.scal =
B(E2 ↑)Siexp

S
. (4.20)
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The scaling factors obtained by normalizing the deduced B(E2 ↑) value for 197Au on the

adopted value are shown in Fig. 4.28. The B(E2 ↑) value deduced for 42Si was not normalized

in this way, because the values shown in Fig. 4.27 do not exhibit a slope. However, if the

B(E2) value for 42Si were to be scaled, the result would be a ≃ 8% increase in the value.

The deduced B(E2; 0+ → 2+) excitation strengths shown for 34−40Si in Fig. 4.27 were

divided by the scaling factors shown in Fig. 4.28, resulting in the corrected B(E2; 0+ → 2+)

excitations strengths shown in Fig. 4.29. This correction to the B(E2) values deduced for

the intermediate-energy Coulomb excitation of 34−40Si removes the non-physical correlation

with the scattering angle and results in values that agree with the previous measurement

[17].
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Figure 4.26: B(E2 ↑) excitation strengths extracted from the measurement of the
intermediate-energy Coulomb excitation of 197Au. The adopted value for the B(E2 ↑)
excitation strength is indicated by the gray box.
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Figure 4.27: B(E2 ↑) excitation strengths extracted from the measurement of the
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Figure 4.28: Scaling factors plotted as a function of the laboratory scattering angle ob-
tained for the intermediate-energy Coulomb excitation of 34−40Si by normalizing the deduced
B(E2; 3/2+ → 7/2+) transition strength for the 197Au target on the adopted value.
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Figure 4.29: Scaled B(E2 ↑) excitation strengths extracted from the measurement of the
intermediate-energy Coulomb excitation of 34−40Si. The adopted value for the B(E2 ↑)
excitation strengths for 34,36,38Si are indicated by the gray boxes. The scaling of the B(E2)
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Chapter 5

Results and Summary

The intermediate-energy Coulomb excitation of 34−42Si was performed in order to determine

the strength of the electric quadrupole transition matrix element between the ground state

and the first excited state with spin-parity 2+ for even-even nuclei in this isotopic chain.

The intermediate-energy Coulomb excitation of 34−40Si was performed using a 197Au target,

while the intermediate-energy Coulomb excitation of 42Si was performed using a 209Bi target.

The de-excitation γ rays were detected in the high-efficiency CAEsium Iodide Scintillator

ARray (CAESAR), which was placed around the target, in coincidence with inelastically

scattered particles detected in the focal plane of the S800 spectrograph.

The B(E2; 0+ → 2+) values deduced in this work are given in Tab. 4.12, together with

the adopted values for the previously measured silicon isotopes (34−38Si) and a theoretical

predictions from the effective interactions SDPF-M [11, 12], SDPF-U and SDPF-NR [13],

and EPQQM [80]. The effective charges used for the calculation of the B(E2 ↑) values are

given in Tab. 5.3.

The effective interaction SDPF-U proposed by Nowacki and Poves [13] predicts B(E2 ↑)

values best describing the measured results, which cannot entirely exclude the result pre-

136



18 20 22 24 26 28 30
0

500

1000

1500

2000

2500

3000

3500

0

100

200

300

400

500

600

700
32 34 36 38 40 42 44

This Work

Adopted

SDPF-M

SDPF-U

EPQQM

SDPF-NR

Neutron Number [N]

Mass Number [A]
B

(E
2

;0
  
  
  
2

  
) 

  
 

+
+ 1

1
 [
e

  
fm

 ]
2

4
E

(2
  
) 

[k
e

V
]

+ 1

Figure 5.1: Upper panel: the B(E2 ↑) transition strength for the even-even silicon isotopic
chain with 20 ≤ N ≤ 28 plotted as a function of the neutron number and compared to
several shell model calculations (discussed in text). The collapse of the N = 28 shell closure
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isotope this work adopted SDPF-U SDPF-NR SDPF-M EPQQM

34Si 95+19
−18 85(33)

36Si 219+38
−37 193(59) 170 150 146 165

38Si 259+47
−46 193(71) 195 185 217 200

40Si 309+67
−66 270 230 317 240

42Si 404(107) 430 265 590 320

Table 5.1: B(E2 ↑) values (in units of e2 fm4) deduced in this work for 34−42Si compared to
the adopted values (from the previous intermediate-energy Coulomb excitation measurement
performed by Ibbotson et al.[17]) and theoretical calculations (discussed in text).

isotope this work adopted SDPF-U SDPF-M

34Si 3328(106) 3327.5(5)

36Si 1406(14) 1399(25) 1360 1590

38Si 1074(14) 1084(20) 960 1285

40Si 986(10) 986(5) 800 1162

42Si 735(40) 770(19) 820 872

Table 5.2: First 2+ excited state energy measured in this work for 34−42Si are compared to
adopted values [17, 21] and to theoretical calculations (discussed in text).

dicted by the EPQQM effective interaction [13]. The predictions of the SPDF-M and SPDF-

NR effective interactions of the B(E2 ↑) value of 42Si are too high and too low, respectively.

More work is needed to completely understand the mechanisms driving the changes in

structure in this region. Two experiments have been proposed and accepted at NSCL to study

the structure of the silicon isotopic chain, one to study the single-particle structure of 36−40Si

model eπ eν
SDPF-U 1.35 0.35
SDPF-NR 1.35 0.35
EPQQM 1.15 0.15
SDPF-M 1.2 0.45

Table 5.3: Effective charges used in the shell model calculations discussed in text.
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[78] and one to extract the deformation parameter of 42Si via proton inelastic scattering [79].

The results from the latter experiment, together with the B(E2) values deduced in this work,

and the results of the previous proton inelastic scattering measurement [18, 19, 20] can be

used to extract the contribution of the protons and neutrons to the deformation in this

isotopic chain out to 42Si.

The cross sections for intermediate-energy Coulomb excitation of 34−42Si were measured

and the B(E2; 0+g.s. → 2+1 ) values for these nuclei were deduced. This measurement com-

prises the first quantification of the electric quadrupole collectivity of 40,42Si and provides a

coherant picture of the evolution of the quadrupole collectivity between the conventionally

magic neutron numbers of N = 20 and N = 28 along the Z = 14 sub-shell gap, showing

that the N = 28 shell closure collapses for Z = 14.
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